Featured Research

from universities, journals, and other organizations

Nano-platform ready: Scientists use DNA origami to create 2-D structures

Date:
June 2, 2014
Source:
New York University
Summary:
Scientists have developed a method using DNA origami to turn one-dimensional nano materials into two dimensions. Their breakthrough offers the potential to enhance fiber optics and electronic devices by reducing their size and increasing their speed. DNA origami employs approximately two hundred short DNA strands to direct longer strands in forming specific shapes.

Scientists at New York University and the University of Melbourne have developed a method using DNA origami to turn one-dimensional nano materials into two dimensions. Their breakthrough, published in the latest issue of the journal Nature Nanotechnology, offers the potential to enhance fiber optics and electronic devices by reducing their size and increasing their speed.

"We can now take linear nano-materials and direct how they are organized in two dimensions, using a DNA origami platform to create any number of shapes," explains NYU Chemistry Professor Nadrian Seeman, the paper's senior author, who founded and developed the field of DNA nanotechnology, now pursued by laboratories around the globe, three decades ago.

Seeman's collaborator, Sally Gras, an associate professor at the University of Melbourne, says, "We brought together two of life's building blocks, DNA and protein, in an exciting new way. We are growing protein fibers within a DNA origami structure."

DNA origami employs approximately two hundred short DNA strands to direct longer strands in forming specific shapes. In their work, the scientists sought to create, and then manipulate the shape of, amyloid fibrils -- rods of aggregated proteins, or peptides, that match the strength of spider's silk.

To do so, they engineered a collection of 20 DNA double helices to form a nanotube big enough (15 to 20 nanometers -- just over one-billionth of a meter -- in diameter) to house the fibrils.

The platform builds the fibrils by combining the properties of the nanotube with a synthetic peptide fragment that is placed inside the cylinder. The resulting fibril-filled nanotubes can then be organized into two-dimensional structures through a series of DNA-DNA hybridization interactions.

"Fibrils are remarkably strong and, as such, are a good barometer for this method's ability to form two-dimensional structures," observes Seeman. "If we can manipulate the orientations of fibrils, we can do the same with other linear materials in the future."

Seeman points to the promise of creating two-dimensional shapes on the nanoscale.

"If we can make smaller and stronger materials in electronics and photonics, we have the potential to improve consumer products," Seeman says. "For instance, when components are smaller, it means the signals they transmit don't need to go as far, which increases their operating speed. That's why small is so exciting -- you can make better structures on the tiniest chemical scales."

The research was supported by grants from the National Institute of General Medical Sciences, part of the National Institutes of Health (GM-29554), the National Science Foundation (CMMI-1120890, CCF-1117210), the Army Research Office (MURI W911NF-11-1-0024), the Office of Naval Research (N000141110729, N000140911118), an Australian Nanotechnology Network Overseas Travel Fellowship, a Melbourne Abroad Travelling Scholarship, the Bio21 Institute and Particulate Fluids Processing Centre. The work was carried out, in part, at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Anuttara Udomprasert, Marie N. Bongiovanni, Ruojie Sha, William B. Sherman, Tong Wang, Paramjit S. Arora, James W. Canary, Sally L. Gras, Nadrian C. Seeman. Amyloid fibrils nucleated and organized by DNA origami constructions. Nature Nanotechnology, 2014; DOI: 10.1038/nnano.2014.102

Cite This Page:

New York University. "Nano-platform ready: Scientists use DNA origami to create 2-D structures." ScienceDaily. ScienceDaily, 2 June 2014. <www.sciencedaily.com/releases/2014/06/140602100142.htm>.
New York University. (2014, June 2). Nano-platform ready: Scientists use DNA origami to create 2-D structures. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2014/06/140602100142.htm
New York University. "Nano-platform ready: Scientists use DNA origami to create 2-D structures." ScienceDaily. www.sciencedaily.com/releases/2014/06/140602100142.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
China's Drone King Says the Revolution Depends on Regulators

China's Drone King Says the Revolution Depends on Regulators

Reuters - Business Video Online (July 30, 2014) Comparing his current crop of drones to early personal computers, DJI founder Frank Wang says the industry is poised for a growth surge - assuming regulators in more markets clear it for takeoff. Jon Gordon reports. Video provided by Reuters
Powered by NewsLook.com
3Doodler Bring 3-D Printing to Your Hand

3Doodler Bring 3-D Printing to Your Hand

AP (July 30, 2014) 3-D printing is a cool technology, but it's not exactly a hands-on way to make things. Enter the 3Doodler: the pen that turns you into the 3-D printer. AP technology writer Peter Svensson takes a closer look. (July 30) Video provided by AP
Powered by NewsLook.com
Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins