Featured Research

from universities, journals, and other organizations

New research provides better understanding of endometriosis

Date:
June 5, 2014
Source:
Elsevier
Summary:
A mouse model of endometriosis has been developed that produces endometriosis lesions similar to those found in humans, according to a report. This model closely mirrors the human condition as an estrogen-dependent inflammatory disorder, and findings from the study suggest that macrophages present in shed endometrium contribute to the development of the lesions.

A mouse model of endometriosis has been developed that produces endometriosis lesions similar to those found in humans, according to a report published in The American Journal of Pathology. This model closely mirrors the human condition as an estrogen-dependent inflammatory disorder, and findings from the study suggest that macrophages present in shed endometrium contribute to the development of the lesions.

Related Articles


"One in 10 women of reproductive age have endometriosis; it is as common as asthma or diabetes, but it can take up to seven years to diagnose and there is an unmet clinical need for better treatments with fewer side effects," reported lead investigator Erin Greaves, PhD, MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, when addressing the UK Parliament regarding her research.

The lack of a readily available, low-cost, and suitable animal model has hindered progress in the field. Nonhuman primates offer a physiologically relevant model, but their use is limited by cost and ethical concerns. Rat and mouse models have the advantage of lower cost and smaller size but have several disadvantages. For example, mouse models often rely on suturing endometrial tissue onto the surface of pelvic organs since rodents do not naturally menstruate, raising the concern that tissue artificially placed in the pelvis may not simulate natural conditions or immune response.

The newly reported mouse model of endometriosis relies on the transplantation of menstrual endometrial tissue between genetically identical mice. In brief, a donor mouse is induced to undergo menstruation using estrogen and progesterone. The tissue that is shed from the uterus is removed and implanted into a recipient mouse, allowed to grow, and then removed and analyzed.

"We found that lesions recovered from a variety of sites in the peritoneum of the mice shared histologic similarities with human lesions, including the presence of hemosiderin, cytokeratin-positive epithelial cells, vimentin-positive stromal cells, and a well-developed vasculature. Most of the lesions had evidence of well-organized stromal and glandular structures," says Dr. Greaves. She noted other similarities including changes in the expression patterns of estrogen receptor α and β, also similar to what is found in patient biopsies.

By performing experiments using mice with green fluorescent protein-labeled macrophages in reciprocal transfers with wild-type mice, the researchers obtained evidence that the macrophages present in the shed endometrium survive and create a pro-inflammatory microenvironment that contributes to the formation of endometriotic lesions. "We are excited by these findings because the contribution of macrophages present in shed endometrium to the etiology of endometriotic lesions has not been studied in previous mouse models," comments Dr. Greaves.

The researchers hope that this model will inform future studies investigating the role of immune cells and menstrual tissue on the development of endometriosis, advance the understanding of mechanisms of the disease, and allow the identification and study of novel targets for therapy.

According to The World Endometriosis Society, endometriosis affects an estimated 176 million women worldwide. It is an inflammatory disorder where patches of endometrium-like tissue (the inner lining of the mammalian uterus) grow as lesions abnormally-located outside the uterine cavity. The tissue is thought to originate from endometrial fragments shed at menses. Characteristic inflammatory changes are seen such as increases in inflammatory mediators and tissue-resident immune cells. Women with endometriosis often complain of chronic, debilitating pelvic pain and infertility.


Story Source:

The above story is based on materials provided by Elsevier. Note: Materials may be edited for content and length.


Journal Reference:

  1. Erin Greaves, Fiona L. Cousins, Alison Murray, Arantza Esnal-Zufiaurre, Amelie Fassbender, Andrew W. Horne, Philippa T.K. Saunders. A Novel Mouse Model of Endometriosis Mimics Human Phenotype and Reveals Insights into the Inflammatory Contribution of Shed Endometrium. The American Journal of Pathology, 2014; DOI: 10.1016/j.ajpath.2014.03.011

Cite This Page:

Elsevier. "New research provides better understanding of endometriosis." ScienceDaily. ScienceDaily, 5 June 2014. <www.sciencedaily.com/releases/2014/06/140605082943.htm>.
Elsevier. (2014, June 5). New research provides better understanding of endometriosis. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2014/06/140605082943.htm
Elsevier. "New research provides better understanding of endometriosis." ScienceDaily. www.sciencedaily.com/releases/2014/06/140605082943.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Malnutrition on the Rise as Violence Flares in C. Africa

Malnutrition on the Rise as Violence Flares in C. Africa

AFP (Jan. 28, 2015) Violence can flare up at any moment in Bambari with only a bridge separating Muslims and Christians. Malnutrition is on the rise and lack of water means simple cooking fires threaten to destroy makeshift camps where people are living. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Poultry Culled in Taiwan to Thwart Bird Flu

Poultry Culled in Taiwan to Thwart Bird Flu

Reuters - News Video Online (Jan. 28, 2015) Taiwan culls over a million poultry in efforts to halt various strains of avian flu. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Media Criticizing Parents For Not Vaccinating Children

Media Criticizing Parents For Not Vaccinating Children

Newsy (Jan. 28, 2015) As the Disneyland measles outbreak continues to spread, the media says parents who choose not to vaccinate their children are part of the cause. Video provided by Newsy
Powered by NewsLook.com
Shark Bite Victim Making Amazing Recovery

Shark Bite Victim Making Amazing Recovery

AP (Jan. 27, 2015) A Texas woman who lost more than five pounds of flesh to a shark in the Bahamas earlier this month could be released from a Florida hospital soon. Experts believe she was bitten by a bull shark while snorkeling. (Jan. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins