Featured Research

from universities, journals, and other organizations

Short nanotubes target pancreatic cancer

Date:
June 5, 2014
Source:
Rice University
Summary:
Short, customized carbon nanotubes have the potential to deliver drugs to pancreatic cancer cells and destroy them from within, according to researchers. Pristine nanotubes produced through a new process can be modified to carry drugs to tumors through gaps in blood-vessel walls that larger particles cannot fit through. The nanotubes may then target and infiltrate the cancerous cells' nuclei, where the drugs can be released through sonication -- that is, by shaking them.

Short, customized carbon nanotubes have the potential to deliver drugs to pancreatic cancer cells and destroy them from within, according to researchers at Rice University and the University of Texas MD Anderson Cancer Center.

Pristine nanotubes produced through a new process developed at Rice can be modified to carry drugs to tumors through gaps in blood-vessel walls that larger particles cannot fit through.

The nanotubes may then target and infiltrate the cancerous cells' nuclei, where the drugs can be released through sonication -- that is, by shaking them.

The research led by Rice chemist Andrew Barron was reported in the Royal Society of Chemistry's Journal of Materials Chemistry B.

Most pancreatic cancer patients die within a year of diagnosis and have a five-year survival rate of 6 percent, partially because there is no method for early detection, according to the American Cancer Society. Tumors are often inoperable and pancreatic cancer cells are also difficult to reach with chemotherapy, said co-author Jason Fleming, a professor of surgical oncology at MD Anderson.

"These findings are encouraging because they offer a potential delivery solution for pancreatic cancer patients whose tumors resist standard chemotherapy," Fleming said. "There are molecular and biological barriers to efficient delivery of chemotherapy to pancreatic cancer tumors, and these nanotubes might be able to make some of those irrelevant."

Rice scientists made nanotubes pure enough to modify for the purpose and small enough to squeeze through the body's defenses, Barron said. The researchers knew from previous work that nanotubes could be modified -- a process called functionalization -- to carry chemotherapy agents and release them at a controlled rate through sonication.

"This time, we were trying to work out how long the tubes should be and the extent of functionalization to maximize uptake by the cells," Barron said.

Several discoveries were key, he said. First, Rice graduate student, alumnus and co-author Alvin Orbaek purified the carbon nanotubes of iron catalysts necessary to their growth by flushing them with chlorine. "Leftover iron particles damage the tubes through oxidation," Barron said. "That makes subsequent use difficult."

The next step was to cut the nanotubes down to size. Very long nanotubes are floppy and hard to deal with, Barron said. Enrico Andreoli, a postdoctoral research associate in Barron's group and lead author of the paper, used a thermal process to chop them to an average length of 50 nanometers. (A human hair is about 100,000 nanometers wide.)

"Instead of ending up with a fluffy nanotube powder, we get something that looks like a hockey puck," Barron said. "It's not dense -- it looks like a spongy puck -- but you can cut it with a razor blade. You can weigh it and do accurate chemistry with it."

Barron's lab added polyethyleneimine (PEI) to the nanotube surfaces. In lab tests, the modified tubes were easily dispersed in liquid and able to pass through barriers into live cancer cells to infiltrate the nuclei. A small-molecule variant of PEI proved to be less toxic to cells than larger versions, Barron said.

"This research shows that the particles are small enough to get inside cells where you like them to be and that they may have an increased killing advantage -- but that's still unknown," Fleming said.

Fleming, whose work focuses on improving drug delivery for pancreatic cancer, cautioned that more research is required. "The next step will be to test this approach in mice that have allografts taken from human tumors," he said. "The architecture of these tumors will more closely resemble that of human pancreatic cancer."


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Enrico Andreoli, Rei Suzuki, Alvin W Orbaek, Manoop S. Bhutani, Robert H Hauge, Wade Adams, Jason B Fleming, Andrew Ross Barron. Preparation and evaluation of polyethyleneimine-single walled carbon nanotube conjugates as vectors for pancreatic cancer treatment. Journal of Materials Chemistry B, 2014; DOI: 10.1039/C4TB00778F

Cite This Page:

Rice University. "Short nanotubes target pancreatic cancer." ScienceDaily. ScienceDaily, 5 June 2014. <www.sciencedaily.com/releases/2014/06/140605155810.htm>.
Rice University. (2014, June 5). Short nanotubes target pancreatic cancer. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2014/06/140605155810.htm
Rice University. "Short nanotubes target pancreatic cancer." ScienceDaily. www.sciencedaily.com/releases/2014/06/140605155810.htm (accessed August 21, 2014).

Share This




More Health & Medicine News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Raw: World's Oldest Man Lives in Japan

Raw: World's Oldest Man Lives in Japan

AP (Aug. 20, 2014) — A 111-year-old Japanese was certified as the world's oldest man by Guinness World Records on Wednesday. Sakari Momoi, a native of Fukushima in northern Japan, was given a certificate at a hospital in Tokyo. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) — A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Freetown a City on Edge

Ebola-Hit Sierra Leone's Freetown a City on Edge

AFP (Aug. 19, 2014) — Residents of Sierra Leone's capital voice their fears as the Ebola virus sweeps through west Africa. Duration: 00:56 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins