Featured Research

from universities, journals, and other organizations

Short nanotubes target pancreatic cancer

Date:
June 5, 2014
Source:
Rice University
Summary:
Short, customized carbon nanotubes have the potential to deliver drugs to pancreatic cancer cells and destroy them from within, according to researchers. Pristine nanotubes produced through a new process can be modified to carry drugs to tumors through gaps in blood-vessel walls that larger particles cannot fit through. The nanotubes may then target and infiltrate the cancerous cells' nuclei, where the drugs can be released through sonication -- that is, by shaking them.

Short, customized carbon nanotubes have the potential to deliver drugs to pancreatic cancer cells and destroy them from within, according to researchers at Rice University and the University of Texas MD Anderson Cancer Center.

Related Articles


Pristine nanotubes produced through a new process developed at Rice can be modified to carry drugs to tumors through gaps in blood-vessel walls that larger particles cannot fit through.

The nanotubes may then target and infiltrate the cancerous cells' nuclei, where the drugs can be released through sonication -- that is, by shaking them.

The research led by Rice chemist Andrew Barron was reported in the Royal Society of Chemistry's Journal of Materials Chemistry B.

Most pancreatic cancer patients die within a year of diagnosis and have a five-year survival rate of 6 percent, partially because there is no method for early detection, according to the American Cancer Society. Tumors are often inoperable and pancreatic cancer cells are also difficult to reach with chemotherapy, said co-author Jason Fleming, a professor of surgical oncology at MD Anderson.

"These findings are encouraging because they offer a potential delivery solution for pancreatic cancer patients whose tumors resist standard chemotherapy," Fleming said. "There are molecular and biological barriers to efficient delivery of chemotherapy to pancreatic cancer tumors, and these nanotubes might be able to make some of those irrelevant."

Rice scientists made nanotubes pure enough to modify for the purpose and small enough to squeeze through the body's defenses, Barron said. The researchers knew from previous work that nanotubes could be modified -- a process called functionalization -- to carry chemotherapy agents and release them at a controlled rate through sonication.

"This time, we were trying to work out how long the tubes should be and the extent of functionalization to maximize uptake by the cells," Barron said.

Several discoveries were key, he said. First, Rice graduate student, alumnus and co-author Alvin Orbaek purified the carbon nanotubes of iron catalysts necessary to their growth by flushing them with chlorine. "Leftover iron particles damage the tubes through oxidation," Barron said. "That makes subsequent use difficult."

The next step was to cut the nanotubes down to size. Very long nanotubes are floppy and hard to deal with, Barron said. Enrico Andreoli, a postdoctoral research associate in Barron's group and lead author of the paper, used a thermal process to chop them to an average length of 50 nanometers. (A human hair is about 100,000 nanometers wide.)

"Instead of ending up with a fluffy nanotube powder, we get something that looks like a hockey puck," Barron said. "It's not dense -- it looks like a spongy puck -- but you can cut it with a razor blade. You can weigh it and do accurate chemistry with it."

Barron's lab added polyethyleneimine (PEI) to the nanotube surfaces. In lab tests, the modified tubes were easily dispersed in liquid and able to pass through barriers into live cancer cells to infiltrate the nuclei. A small-molecule variant of PEI proved to be less toxic to cells than larger versions, Barron said.

"This research shows that the particles are small enough to get inside cells where you like them to be and that they may have an increased killing advantage -- but that's still unknown," Fleming said.

Fleming, whose work focuses on improving drug delivery for pancreatic cancer, cautioned that more research is required. "The next step will be to test this approach in mice that have allografts taken from human tumors," he said. "The architecture of these tumors will more closely resemble that of human pancreatic cancer."


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Enrico Andreoli, Rei Suzuki, Alvin W Orbaek, Manoop S. Bhutani, Robert H Hauge, Wade Adams, Jason B Fleming, Andrew Ross Barron. Preparation and evaluation of polyethyleneimine-single walled carbon nanotube conjugates as vectors for pancreatic cancer treatment. Journal of Materials Chemistry B, 2014; DOI: 10.1039/C4TB00778F

Cite This Page:

Rice University. "Short nanotubes target pancreatic cancer." ScienceDaily. ScienceDaily, 5 June 2014. <www.sciencedaily.com/releases/2014/06/140605155810.htm>.
Rice University. (2014, June 5). Short nanotubes target pancreatic cancer. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/06/140605155810.htm
Rice University. "Short nanotubes target pancreatic cancer." ScienceDaily. www.sciencedaily.com/releases/2014/06/140605155810.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins