Featured Research

from universities, journals, and other organizations

Three gene networks found in autism, may present treatment targets

Date:
June 6, 2014
Source:
Children's Hospital of Philadelphia
Summary:
A new analysis of DNA from thousands of patients has uncovered several underlying gene networks with potentially important roles in autism. These networks may offer attractive targets for developing new autism drugs or repurposing drugs for other indications. Furthermore, one of the autism-related gene pathways also affects some patients with attention-deficit hyperactivity disorder (ADHD) and schizophrenia—raising the possibility that a class of drugs may treat particular subsets of all three neurological disorders.

A large new analysis of DNA from thousands of patients has uncovered several underlying gene networks with potentially important roles in autism. These networks may offer attractive targets for developing new autism drugs or repurposing existing drugs that act on components of the networks.

Furthermore, one of the autism-related gene pathways also affects some patients with attention-deficit hyperactivity disorder (ADHD) and schizophrenia—raising the possibility that a class of drugs may treat particular subsets of all three neurological disorders.

“Neurodevelopmental disorders are extremely heterogeneous, both clinically and genetically,” said study leader Hakon Hakonarson, M.D., Ph.D., director of the Center for Applied Genomics at The Children’s Hospital of Philadelphia (CHOP). “However, the common biological patterns we are finding across disease categories strongly imply that focusing on underlying molecular defects may bring us closer to devising therapies.”

The study by Hakonarson and colleagues, appearing online today in Nature Communications, draws on gene data from CHOP’s genome center as well as from the Autism Genome Project and the AGRE Consortium, both part of the organization Autism Speaks.

Autism spectrum disorders (ASDs), of which autism is the best known, are a large group of heritable childhood neuropsychiatric conditions characterized by impaired social interaction and communication, as well as by restricted behaviors. The authors note that recent investigations suggest that up to 400 distinct ASDs exist.

The current research is a genome-wide association study comparing more than 6,700 patients with ASDs to over 12,500 control subjects. It was one of the largest-ever studies of copy number variations (CNVs) in autism. CNVs are deletions or duplications of DNA sequences, as distinct from single-base changes in DNA.

The study team focused on CNVs within defective gene family interaction networks (GFINs)—groups of disrupted genes acting on biological pathways. In patients with autism, the team found three GFINs in which gene variants perturb how genes interact with proteins. Of special interest to the study group was the metabotropic glutamate receptor (mGluR) signaling pathway, defined by the GRM family of genes that affects the neurotransmitter glutamate, a major chemical messenger in the brain regulating functions such as memory, learning, cognition, attention and behavior.

Hakonarson’s team and other investigators previously reported that 10 percent or more of ADHD patients have CNVs in genes along the glutamate receptor metabotropic (GRM) pathway, while other teams have implicated GRM gene defects in schizophrenia.

Based on these findings, Hakonarson is planning a clinical trial in selected ADHD patients of a drug that activates the GRM pathway. “If drugs affecting this pathway prove successful in this subset of patients with ADHD, we may then test these drugs in autism patients with similar gene variants,” he said.

In ASDs and other complex neurodevelopmental disorders, common gene variants often have very small individual effects, while very rare gene variants exert stronger effects. Many of these genes with very rare defects belong to gene families that may offer druggable targets.

The three gene families found in the current study have notable functional roles. The CALM1 network includes the calmodulin family of proteins, which regulate cell signaling and neurotransmitter function. The MXD-MYC-MAX gene network is involved in cancer development, and may underlie links reported between autism and specific types of cancer. Finally, members of the GRM gene family affect nerve transmission, neuron formation, and interconnections in the brain—processes highly relevant to ASDs.

The functional activities identified in the current study are consistent with a recent multicenter study in which Hakonarson participated, published May 1 in the American Journal of Human Genetics. That study, led by scientists from Paris and Toronto, and using Autism Genome Project data, found hundreds of rare ASD-related gene variants converging on gene networks involved in neuronal signaling, synapse function and chromatin regulation (a biological process affecting gene expression). Many of the genes in these networks have been implicated in other developmental disorders besides autism.

“Even though our own study was large, it captures only about 20 percent of genes causing ASDs,” said Hakonarson, who added that still larger studies are needed to further unravel the genetic landscape of autism. “However, strong animal data support an important role for the glutamate receptor pathway in socially impaired behaviors modeling ASDs. Because the GRM pathway seems to be a major driver in three diseases-- autism, ADHD and schizophrenia--there is a compelling rationale for investigating treatment strategies focused on this pathway.”


Story Source:

The above story is based on materials provided by Children's Hospital of Philadelphia. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hakon Hakonarson, M.D., Ph.D. et al. The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism. Nature Communications, June 2014 DOI: 10.1038/ncomms5074

Cite This Page:

Children's Hospital of Philadelphia. "Three gene networks found in autism, may present treatment targets." ScienceDaily. ScienceDaily, 6 June 2014. <www.sciencedaily.com/releases/2014/06/140606091155.htm>.
Children's Hospital of Philadelphia. (2014, June 6). Three gene networks found in autism, may present treatment targets. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2014/06/140606091155.htm
Children's Hospital of Philadelphia. "Three gene networks found in autism, may present treatment targets." ScienceDaily. www.sciencedaily.com/releases/2014/06/140606091155.htm (accessed August 20, 2014).

Share This




More Mind & Brain News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) — A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) — Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Newsy (Aug. 19, 2014) — A study by King's College London says there's a link between how well kids draw at age 4 and how intelligent they are later in life. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins