Featured Research

from universities, journals, and other organizations

Asymmetric continental margins and the slow birth of an ocean

Date:
June 6, 2014
Source:
Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences
Summary:
When South America split from Africa 150 to 120 million years ago, the South Atlantic formed and separated Brazil from Angola. The continental margins formed through this separation are surprisingly different. Along offshore Angola 200 km wide, very thin slivers of continental crust have been detected, whereas the Brazilian counterpart margin features an abrupt transition between continental and oceanic crust.

A newborn ocean. Only few tenths of kilometres separate the massive rift shoulders of the Sinai-Peninsula from the African continent on the far side of the Gulf of Suez. 130 Million years ago, the young South Atlantic ocean has likely looked similar.
Credit: Christian Heine, University of Sydney

When South America split from Africa 150 to 120 million years ago, the South Atlantic formed and separated Brazil from Angola. The continental margins formed through this separation are surprisingly different. Along offshore Angola 200 km wide, very thin slivers of continental crust have been detected, whereas the Brazilian counterpart margin features an abrupt transition between continental and oceanic crust.

Related Articles


For decades, geoscientists have struggled to explain not only why the amount of thinning and the geometries of opposite rifted continental margin are not symmetric, but also why wide margins are often underlain by highly thinned continental crust. Now geoscientists from the German Research Centre for Geosciences (GFZ), the University of Sydney and the University of London have found an explanation, published in the current issue of 'Nature Communications'. Using high-resolution computer models and geological data from the South Atlantic margins, they discovered that the centre of the rift, where the continental crust gets actively thinned through faulting, does not stay fixed during continental break-up, but migrates laterally.

"We could show that rifts are capable of moving sideways over hundreds of kilometres," says Dr Sascha Brune of the GFZ. "During rift migration, the crust on one side of the rift is weakened by hot upwelling material in Earth's mantle, whereas the other side is slightly stronger as the crust there is colder. New faults form only on the warm, weak rift side, while those of the strong side become inactive." This leads to a sideways motion of the rift system, which is equivalent with conveying crustal material from the South American plate to the African plate. These transferred crustal blocks are strongly extended by the rift and finally constitute the enigmatic thin crustal slivers of the African margin.

Such a relocation of a rift takes its time: during the formation of the present-day Angolan and Brazilian margins, the rift centre migrated more than 200 km westward. This delayed continental break-up and the generation of oceanic crust by up to 20 million years. The new models reveal that extension velocity plays a crucial role in understanding the widths of South Atlantic margins: faster crustal extension leads to longer rift migration and hence to more pronounced asymmetry of the generated continental margins.

Rifts constitute an important tectonic element of our planet. They are responsible for the shape of today's continents, and their activity still continues at present.

Illustrating a new aspect of plate tectonic theory, this study shows that during continental break-up, large amounts of material can be conveyed from one side of the plate boundary to the other, a process that has not been yet accounted for. The new models and analyses provide an important stepping-stone toward a comprehensive understanding of rift processes and continental margin formation.


Story Source:

The above story is based on materials provided by Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sascha Brune, Christian Heine, Marta Pιrez-Gussinyι, Stephan V. Sobolev. Rift migration explains continental margin asymmetry and crustal hyper-extension. Nature Communications, 2014; 5 DOI: 10.1038/ncomms5014

Cite This Page:

Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences. "Asymmetric continental margins and the slow birth of an ocean." ScienceDaily. ScienceDaily, 6 June 2014. <www.sciencedaily.com/releases/2014/06/140606091419.htm>.
Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences. (2014, June 6). Asymmetric continental margins and the slow birth of an ocean. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2014/06/140606091419.htm
Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences. "Asymmetric continental margins and the slow birth of an ocean." ScienceDaily. www.sciencedaily.com/releases/2014/06/140606091419.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Fossils & Ruins News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Discovery Of 'Dragon' Dinosaur In China Could Explain Myths

Discovery Of 'Dragon' Dinosaur In China Could Explain Myths

Newsy (Jan. 30, 2015) — A long-necked dinosaur from the Jurassic Period was discovered in China. Researchers think it could answer mythology questions. Video provided by Newsy
Powered by NewsLook.com
Battle of Waterloo Artefacts Go on Display at Windsor Castle

Battle of Waterloo Artefacts Go on Display at Windsor Castle

AFP (Jan. 29, 2015) — Artefacts from the Battle of Waterloo go on display at Windsor Castle to mark the 200th anniversary of the momentous battle. The exhibition includes contemporary prints, drawings and personal belongings of French Emperor Napoleon. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Mideast Skull Find Sheds Light on Human Ancestors' Trek

Mideast Skull Find Sheds Light on Human Ancestors' Trek

AFP (Jan. 29, 2015) — A 55,000-year-old partial skull found in the Middle East gives clues to when our ancestors left their African homeland, and strengthens theories that they co-habited with Neanderthals. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
Scientists Say Earliest Snakes Lived Alongside The Dinosaurs

Scientists Say Earliest Snakes Lived Alongside The Dinosaurs

Newsy (Jan. 28, 2015) — Wrongly categorized as lizard fossils, snake fossils now show the reptile could have developed earlier than we thought — 70 million years earlier. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins