Featured Research

from universities, journals, and other organizations

Faster, higher, stronger: Protein that enables powerful initial immune response

Date:
June 9, 2014
Source:
The Wistar Institute
Summary:
A protein, called Foxp1, is a key controller of our immune system's ability to generate an antibody response, researchers report. Manipulating this protein's activity, they say, could provide a useful pathway to boosting antibody responses to treat infectious diseases, for example, or suppressing them to treat autoimmune disorders.

Your first response to an infectious agent or antigen ordinarily takes about a week, and is relatively weak. However, if your immune system encounters that antigen a second time, the so-called memory response is rapid, powerful, and very effective.

Now, a team of researchers at The Wistar Institute offers evidence that a protein, called Foxp1, is a key component of these antibody responses. Manipulating this protein's activity, they say, could provide a useful pathway to boosting antibody responses to treat infectious diseases, for example, or suppressing them to treat autoimmune disorders. Their findings appear online in the journal Nature Immunology.

"Foxp1 has an important role in our antibody immune responses, and if we could find a way to regulate Foxp1 activity in a subset of T cells, the CD4+ T cells, it could have some profound impact on the antibody responses," said Hui Hu, Ph.D., senior author of the study and associate professor at Wistar's National Cancer Institute-designated Cancer Center.

"Repressing Foxp1 activity, for example, we may be able to make antibody responses faster-acting and more effective, which could be crucial in, say, a pandemic when time is a critical factor," Hu said. "Alternatively, if we could enhance the effectiveness of this protein, we may be able to significantly dampen the antibody responses that are unwanted in some cases of autoimmune diseases such as lupus."

Previously, the Hu laboratory determined that Foxp1 was responsible for keeping T cells -- the white blood cells that mediate our immune system -- on "active stand-by mode," a process called quiescence. In the present study, Hu teamed with the laboratories of Louise C. Showe, Ph.D., professor in the Wistar Cancer Center's Molecular and Cellular Oncogenesis program, which provided crucial genomics expertise, and Jan Erickson, Ph.D., professor in the Tumor Microenvironment and Metastasis program, which offered expertise in the study of autoimmunity and the activation of B cells, the cells that generate antibodies.

According to their Nature Immunology report, variants (or isoforms) of Foxp1 (called Foxp1A and Foxp1D) are critical regulators for the formation of a type of T cells, called T Follicular Helper (TFH) cells. These TFH cells then go on to enable B cells in creating long-lived, highly reactive antibodies. The proteins are transcription factors, meaning they work by binding to DNA to control which genes in these T cells are "read" or translated into protein.

In the initial days of an immune response, the Foxp1 proteins determine how TFH cells arise from activated T cells. "The two isoforms act as regulators of TFH differentiation in the early moments of the immune response, where they effectively act as gatekeepers to slow TFH development, " Hu said. "They constitute a 'double-check' system that prevents the humoral branch of the immune system from acting too hastily."


Story Source:

The above story is based on materials provided by The Wistar Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Haikun Wang, Jianlin Geng, Xiaomin Wen, Enguang Bi, Andrew V Kossenkov, Amaya I Wolf, Jeroen Tas, Youn Soo Choi, Hiroshi Takata, Timothy J Day, Li-Yuan Chang, Stephanie L Sprout, Emily K Becker, Jessica Willen, Lifeng Tian, Xinxin Wang, Changchun Xiao, Ping Jiang, Shane Crotty, Gabriel D Victora, Louise C Showe, Haley O Tucker, Jan Erikson, Hui Hu. The transcription factor Foxp1 is a critical negative regulator of the differentiation of follicular helper T cells. Nature Immunology, 2014; DOI: 10.1038/ni.2890

Cite This Page:

The Wistar Institute. "Faster, higher, stronger: Protein that enables powerful initial immune response." ScienceDaily. ScienceDaily, 9 June 2014. <www.sciencedaily.com/releases/2014/06/140609153510.htm>.
The Wistar Institute. (2014, June 9). Faster, higher, stronger: Protein that enables powerful initial immune response. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2014/06/140609153510.htm
The Wistar Institute. "Faster, higher, stronger: Protein that enables powerful initial immune response." ScienceDaily. www.sciencedaily.com/releases/2014/06/140609153510.htm (accessed September 22, 2014).

Share This



More Health & Medicine News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins