Featured Research

from universities, journals, and other organizations

Novel process allows production of the entire circuitry on touchscreens in one step

Date:
June 11, 2014
Source:
INM - Leibniz-Institut für Neue Materialien gGmbH
Summary:
When users operate their smartphones, tablets and so on, they do not give a second thought to the complicated electronics that make them work. All that concerns them is that they can happily swipe and tap away. To make the touchscreens work, they are provided on their surface with microscopically small electrical conductor tracks, which open and close circuits when touched with a finger. At the peripheries of the devices, these microscopic tracks merge into larger conductor tracks. Until now, several production stages have been needed to create them. Researchers are now presenting a novel process that allows microscopic and macroscopic conductor tracks to be produced in one step.

Electronic micro and conductor strips via Photometallization.
Credit: INM

When users operate their smartphones, tablets and so on, they do not give a second thought to the complicated electronics that make them work. All that concerns them is that they can happily swipe and tap away. To make the touchscreens work, they are provided on their surface with microscopically small electrical conductor tracks, which open and close circuits when touched with a finger. At the peripheries of the devices, these microscopic tracks merge into larger conductor tracks. Until now, several production stages have been needed to create them. The researchers at the INM -- Leibniz-Institute for New Materials are now presenting a novel process that allows microscopic and macroscopic conductor tracks to be produced in one step.

Related Articles


The INM from Saarbruecken will be one of the few German research institutions at the TechConnect World trade fair on 16 and 17 June in Washington DC, USA, where it will be presenting this and other results. Working in cooperation with the VDI Association of German Engineers it will be showcasing its latest developments at Stand 301 in the German Area.

The developers are basing the novel process on photometallization: under exposure to UV light, and acting in conjunction with a photoactive layer, colourless silver compounds turn into electrically conductive silver. The silver compound can be applied in the form of tracks or other structures to plastic films or glass by various methods. Tracks of various sizes, down to the smallest size of a 1000th of a millimetre, can be created in this way. The corresponding conductor tracks are then produced by exposure to UV light.

The films or glass are first coated with a photoactive layer of metal oxide nanoparticles. "We then apply the colourless, UV-stable silver compound," says Peter William de Oliveira, Head of the Optical Materials Program Division. The exposure of this series of layers has the effect that the silver compound on the photoactive layer decomposes and the silver ions are reduced to metallic, electrically conductive silver. This process is said to have several advantages: it is claimed to be quick, flexible, variable in scale, low in cost and environmentally friendly. And there is no need for any further post-treatment process steps.

This basic principle allows researchers at the INM to very individually apply conductor strips of different sizes to substrates such as glass or plastic. "There are three different options that we can use as required. "Writing" using a UV laser is particularly good for the first customized production and testing of a new conductor strip design, but this method is too time-consuming for mass production," explains physicist de Oliveira.

Photomasks that are only UV-permeable at the desired positions can also be used for structuring. "The production of these masks is quite costly and has a high environmental impact. For a "semi-continuous process" they are particularly suitable for solid substrates such as glass," says the materials expert, but they were not suitable for a potential roll-to-roll process because they are mainly composed of quartz glass and are not flexible.

The researchers are currently focusing their efforts on a third method using so-called transparent stamps. "These stamps mechanically displace the silver complex, and where there is no silver there is also no conductor strip," in de Oliveira's opinion. "So we can form structures measuring just a few micrometers. Since the stamps are made of a flexible polymer, we have here the possibility of arranging them on a roll. Because they are transparent, we are working on incorporating the UV source in the roll, so the first steps would be done for a roll-to-roll process," the Head of the Program Division sums up. This has enabled conductor strip structures of different sizes to be produced on substrates such as polyethylene or polycarbonate film on a large scale.


Story Source:

The above story is based on materials provided by INM - Leibniz-Institut für Neue Materialien gGmbH. Note: Materials may be edited for content and length.


Cite This Page:

INM - Leibniz-Institut für Neue Materialien gGmbH. "Novel process allows production of the entire circuitry on touchscreens in one step." ScienceDaily. ScienceDaily, 11 June 2014. <www.sciencedaily.com/releases/2014/06/140611093240.htm>.
INM - Leibniz-Institut für Neue Materialien gGmbH. (2014, June 11). Novel process allows production of the entire circuitry on touchscreens in one step. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2014/06/140611093240.htm
INM - Leibniz-Institut für Neue Materialien gGmbH. "Novel process allows production of the entire circuitry on touchscreens in one step." ScienceDaily. www.sciencedaily.com/releases/2014/06/140611093240.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) — Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) — What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) — A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins