Featured Research

from universities, journals, and other organizations

Reversal of type 1 diabetes in mice may eventually help humans

Date:
June 14, 2014
Source:
University of Cincinnati Academic Health Center
Summary:
Investigators have found a therapy that reverses new onset type 1 diabetes in mouse models and may advance efforts in combating the disease among humans. There is no cure for Type 1 diabetes though it can be controlled with insulin therapy. Symptoms of the disease include frequent urination, excessive thirst and weight loss even though you are eating more.

Mouse (stock image).
Credit: ludoviq / Fotolia

Investigators at the University of Cincinnati (UC) have found a therapy that reverses new onset Type 1 diabetes in mouse models and may advance efforts in combating the disease among humans.

The study, led by William Ridgway, MD, was presented Saturday, June 14, 2014, at the American Diabetes Association's 74th Scientific Sessions in San Francisco.

Type 1 diabetes is usually diagnosed in children and young adults and affects about 5 percent of all people with diabetes, according to the American Diabetes Association. In Type 1 diabetes, the body does not produce sufficient insulin, which is central to glucose metabolism: without insulin, blood glucose rises.

There is no cure for Type 1 diabetes though it can be controlled with insulin therapy. Symptoms of the disease include frequent urination, excessive thirst and weight loss even though you are eating more.

Researchers say the incidence of Type 1 diabetes and autoimmunity in general has risen rapidly since the mid-20th century, possibly the result of under-stimulation of innate immune systems which trigger autoimmunity in children and young adults. In Type 1 diabetes, autoimmunity causes the body's T-cells to attack its insulin-producing beta cells.

Previously, it has been reported that non-obese diabetic mice have defects in innate immune cells and that TLR4, a toll-like receptor, plays a protective role in preventing Type 1 diabetes.

Ridgway, Alice W. and Mark A. Brown Professor and Director of the division of immunology, allergy and rheumatology at UC, says his team of researchers used an agonistic monoclonal antibody, UT18, to boost the activity of TLR4 and reverse new onset diabetes in a high percentage of newly diabetic non-obese mice.

"We have shown that by using an antibody to stimulate a specific molecule in the innate immune system we can reverse -- with a high rate of success -- new onset diabetes in mice that have already developed the symptoms of diabetes," says Ridgway. "The cause of this reversal is a preservation of the endocrine pancreatic beta cells that produce insulin. These cells are preserved from the autoimmune attack which is the hallmark of Type 1 diabetes."

The key to reversing Type 1 diabetes in mice, says Ridgway, is catching the disease at its onset, which is typically within a very short time window. The time frame would be longer in humans, but it is still a relatively short time from new onset to end-stage Type 1 diabetes, says Ridgway.

Ridgway says this approach differs from most in combating Type 1 diabetes because his team's therapies in mice do not directly interact with T-cells. He says treatment of autoimmunity has often been directed at suppressing an over-zealous adaptive immune response by eliminating auto-reactive T-cells.

"We are targeting a different part of the immune system," says Ridgway. "There are two arms of the immune system. One is called the adaptive immune system and the other is the innate immune system. Basically the T-cells and B-cells are in your adaptive immune system and they respond to many different antigens. The innate system tends to have a stereotypical response. We are targeting a receptor that is found mostly on the innate immune cells, such as dendritic cells.

"This same molecular TLR4 pathway operates in humans in many similar ways; though there are some differences, it is possible this new pathway of targeting the immune system could be tested in humans," says Ridgway.

Additional study will be required, but the therapy may hold promise because one agonistic anti-TLR4 agent is already FDA approved and others are under development, says Ridgway.


Story Source:

The above story is based on materials provided by University of Cincinnati Academic Health Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Cincinnati Academic Health Center. "Reversal of type 1 diabetes in mice may eventually help humans." ScienceDaily. ScienceDaily, 14 June 2014. <www.sciencedaily.com/releases/2014/06/140614192638.htm>.
University of Cincinnati Academic Health Center. (2014, June 14). Reversal of type 1 diabetes in mice may eventually help humans. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2014/06/140614192638.htm
University of Cincinnati Academic Health Center. "Reversal of type 1 diabetes in mice may eventually help humans." ScienceDaily. www.sciencedaily.com/releases/2014/06/140614192638.htm (accessed September 30, 2014).

Share This



More Health & Medicine News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How 'Yes Means Yes' Defines Sexual Assault

How 'Yes Means Yes' Defines Sexual Assault

Newsy (Sep. 29, 2014) Aimed at reducing sexual assaults on college campuses, California has adopted a new law changing the standard of consent for sexual activity. Video provided by Newsy
Powered by NewsLook.com
Scientists May Have Found An Early Sign Of Pancreatic Cancer

Scientists May Have Found An Early Sign Of Pancreatic Cancer

Newsy (Sep. 29, 2014) Researchers looked at 1,500 blood samples and determined people who developed pancreatic cancer had more branched chain amino acids. Video provided by Newsy
Powered by NewsLook.com
Colo. Doctors See Cluster of Enterovirus Cases

Colo. Doctors See Cluster of Enterovirus Cases

AP (Sep. 29, 2014) Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com
Dr.'s Unsure of Cause of Fast-Spreading Virus

Dr.'s Unsure of Cause of Fast-Spreading Virus

AP (Sep. 29, 2014) Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins