Featured Research

from universities, journals, and other organizations

Potential cholesterol lowering drug has breast cancer fighting capabilities

Date:
June 17, 2014
Source:
University of Missouri-Columbia
Summary:
A compound initially developed as a cholesterol-fighting molecule not only halts the progression of breast cancer, but also can kill the cancerous cells, research confirms. "The compound exhibited anti-tumor properties in human samples and in samples that were administered by injection into the mice," one researcher said. "In both cases, the proteins that cause tumors to grow were eliminated, leading to more aggressive cell death."

Researchers at the University of Missouri have proven that a compound initially developed as a cholesterol-fighting molecule not only halts the progression of breast cancer, but also can kill the cancerous cells.

"Cholesterol is a molecule found in all animal cells and serves as a structural component of cell membranes," said Salman Hyder, the Zalk Endowed Professor in Tumor Angiogenesis and professor of biomedical sciences in the College of Veterinary Medicine and the Dalton Cardiovascular Research Center at MU. "Because tumor cells grow rapidly they need to synthesize more cholesterol. Scientists working to cure breast cancer often seek out alternative targets that might slow or stop the progression of the disease, including the elimination of the cancerous cells. In our study, we targeted the production of cholesterol in cancer cells leading to death of breast cancer cells."

Previous studies suggest that 70 percent of breast cancers found in women are hormone dependent and can be treated with anti-hormone medicines such as tamoxifen. Although tumor cells may initially respond to therapies, most eventually develop resistance which causes breast cancer cells to grow and spread. Cholesterol also can contribute to the development of anti-hormone resistance because cholesterol is converted into hormones in tumor cells. Therefore, these cholesterol-forming pathways are attractive therapeutic targets for the treatment of breast cancer.

Using compounds initially developed by Roche Pharmaceuticals for the treatment of high cholesterol, which reduces cholesterol in a different manner than the widely used statins, Hyder and his team administered the molecule to human breast cancer cells. They found that the compound was effective in reducing human breast cancer cell growth and often caused cancer cell death. Most interestingly they found that the cholesterol lowering drug they tested destroyed an estrogen receptor, a protein which encourages the tumor cells to grow.

Equipped with this information, Hyder and the team tested the results in mice with breast cancer. Following injection of the compound, Hyder found that the molecule was effective at killing breast cancer cells by reducing the presence of estrogen receptors in tumor cells, Hyder said.

"The compound exhibited anti-tumor properties in both human samples, which were outside the body, and in samples that were administered by injection into the mice," Hyder said. "In both cases, the proteins that cause tumors to grow were eliminated, leading to more aggressive cell death."

Hyder believes that further clinical testing can lead to a drug that has the dual purpose of fighting high cholesterol and cancer.

Researchers involved with the study included Yayun Liang, research associate professor at Dalton Cardiovascular Research Center; Cynthia Besch-Williford, professor of veterinary pathobiology at MU; Benford Mafuvadze, post-doctoral fellow at Dalton Cardiovascular Research Center; Matthew Cook, pre-doctoral fellow in Biomedical Sciences; and Xiaoqin Zou, associate professor of physics and biochemistry and a researcher at the Dalton Cardiovascular Research Center. Johannes Aebi from Roche Pharmaceuticals also contributed to the research.


Story Source:

The above story is based on materials provided by University of Missouri-Columbia. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yayun Liang, Cynthia Besch-Williford, Johannes D. Aebi, Benford Mafuvadze, Matthew T. Cook, Xiaoqin Zou, Salman M. Hyder. Cholesterol biosynthesis inhibitors as potent novel anti-cancer agents: suppression of hormone-dependent breast cancer by the oxidosqualene cyclase inhibitor RO 48-8071. Breast Cancer Research and Treatment, 2014; DOI: 10.1007/s10549-014-2996-5

Cite This Page:

University of Missouri-Columbia. "Potential cholesterol lowering drug has breast cancer fighting capabilities." ScienceDaily. ScienceDaily, 17 June 2014. <www.sciencedaily.com/releases/2014/06/140617112228.htm>.
University of Missouri-Columbia. (2014, June 17). Potential cholesterol lowering drug has breast cancer fighting capabilities. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2014/06/140617112228.htm
University of Missouri-Columbia. "Potential cholesterol lowering drug has breast cancer fighting capabilities." ScienceDaily. www.sciencedaily.com/releases/2014/06/140617112228.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins