Featured Research

from universities, journals, and other organizations

Microscope maps surfaces at resolutions below 100 nanometers: Microparticles get the whole picture

Date:
June 19, 2014
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Microscopes are conventionally used to image tiny features. However, their resolution is inherently limited by the wavelength of light. This limitation means that they can resolve only structures larger than a few hundred nanometers. Now scientists have demonstrated an alternative optical approach capable of mapping surfaces at resolutions below 100 nanometers.

Microscopes are conventionally used to image tiny features. However, their resolution is inherently limited by the wavelength of light. This limitation means that they can resolve only structures larger than a few hundred nanometers. Now, Leonid Krivitsky and Boris Luk'yanchuk at the A*STAR Data Storage Institute in Singapore and co-workers have demonstrated an alternative optical approach capable of mapping surfaces at resolutions below 100 nanometers.

Related Articles


Diffraction is the tendency for all waves, including light, to spread out when they pass near an object or through a gap. This effect means that optical imaging systems cannot resolve objects smaller than roughly half the wavelength of the illuminating light. Thus, for red light with a wavelength of about 600 nm, the resolution will be approximately 300 nanometers.

Luk'yanchuk and his colleagues previously showed that a micrometer-scale transparent bead placed on a surface can circumvent this so-called diffraction limit. They demonstrated that light passing through the bead, when collected by a conventional microscope, can create an image of the surface beneath it with a resolution of 50 nanometers. However, generating a complete two-dimensional map requires scanning the bead across the surface -- not easy to perform in a controlled way when the sphere is only 6 micrometers across. "We have now improved this superresolution technique by developing a method to controllably move the imaging microspheres," says Krivitsky.

Krivitsky and his team accomplished such spatial scanning using a tiny pipette with a tip just 1 or 2 micrometers wide. Computer simulations confirmed that the presence of the pipette would not adversely affect the superresolution capability of the microspheres. To fasten the pipette to the bead, they sucked the air out from within its cavity.

The team then connected the other end of the pipette to a mechanical stage, which could move in steps as small as 20 nanometers. Importantly, the vacuum inside the pipette created a bond tight enough to ensure that the bead did not disconnect as it was dragged across a surface. The researchers demonstrated the effectiveness of their system by successfully imaging trial samples with features as small as 75 nanometers.

While other techniques, such as near-field scanning microscopy, can perform sub-diffraction-limit imaging, they require very expensive systems. "The real advantages of our technique are its simplicity and its price," says Krivitsky. "The idea could be applied to a variety of superresolution applications such as sample inspection, microfabrication and bioimaging."


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Leonid A. Krivitsky, Jia Jun Wang, Zengbo Wang, Boris Luk'yanchuk. Locomotion of microspheres for super-resolution imaging. Scientific Reports, 2013; 3 DOI: 10.1038/srep03501

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Microscope maps surfaces at resolutions below 100 nanometers: Microparticles get the whole picture." ScienceDaily. ScienceDaily, 19 June 2014. <www.sciencedaily.com/releases/2014/06/140619145930.htm>.
The Agency for Science, Technology and Research (A*STAR). (2014, June 19). Microscope maps surfaces at resolutions below 100 nanometers: Microparticles get the whole picture. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/06/140619145930.htm
The Agency for Science, Technology and Research (A*STAR). "Microscope maps surfaces at resolutions below 100 nanometers: Microparticles get the whole picture." ScienceDaily. www.sciencedaily.com/releases/2014/06/140619145930.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New A350 Help Airbus Fly?

Will New A350 Help Airbus Fly?

Reuters - Business Video Online (Dec. 22, 2014) Qatar Airways takes first delivery of Airbus' new A350 passenger jet. As Joel Flynn reports it's the planemaker's response to the Boeing 787 Dreamliner and the culmination of eight years of development. Video provided by Reuters
Powered by NewsLook.com
Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Buzz60 (Dec. 22, 2014) A BASE jumper rides a lawn chair, a shotgun, and a giant bunch of helium balloons into the sky in what seems like a country version of the movie 'Up." Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins