Featured Research

from universities, journals, and other organizations

Materials for the building industry: A shape-conscious alloy

Date:
June 20, 2014
Source:
Empa Swiss Federal Laboratories for Materials Science and Technology
Summary:
When the frame of a pair of glasses is bent out of shape, it's not that easy to return it to its original form. If, however, your spectacles are made of a shape memory alloy then you don't have a problem. Just place the frame in hot water and bingo! – they're as good as new again. Empa researchers have now shown that these materials can also find applications in the building industry. For example in the reinforcement of bridges.

Forging an iron-based shape memory alloy (SMA) cast block: To shape the block, it is heated to around 1,150 degrees Celsius.
Credit: TU Bergakademie Freiberg, Institut für Metallformung

Shape memory alloys, or SMAs, possess the ability to return to their original shape after being severely deformed, either spontaneously or following the application of heat. This makes them useful materials, not just for making spectacle frames but also for technical applications such as thermostats, stents and micro-actuators. Other applications in the construction industry are conceivable too, for example in the reinforcement of bridges.

Related Articles


If a concrete beam is cast with reinforcing rods made of an SMA material, these can then be "activated" through the application of heat. They attempt to return to their original shape, but because of their concrete sheath they cannot do so, thus exerting a pre-stressing force on the beam. This effect can be used, for example, to pre-stress a complete bridge span. In order to generate the necessary force the SMA rods must simply be heated by passing an electric current through them. This obviates the need for using elaborate tensioning systems and jacket tubes, as used in conventional pre-stressing techniques.

The nickel titanium alloys used to make spectacle frames or stents are not very suitable for use in the construction industry. Iron-based SMA products are much more attractive, since both the raw materials and the processing costs are far cheaper. However, to date one problem has remained a stumbling block: to activate the memory effect the materials currently used must be heated up to 400° C, which for applications involving concrete or mortar, or other heat sensitive materials, is too high. Empa researchers led by Christian Leinenbach of the Joining Technology and Corrosion Laboratory have now succeeded in developing a novel iron-manganese-silicon SMA alloy which is activated at just 160° C, a temperature much more suitable for use with concrete. The material science researchers "designed" a range of virtual alloys using thermodynamic simulations, and then selected the most promising combinations. These were then manufactured in the laboratory and their shape memory characteristics tested, with great success. Several of the new materials met the construction engineers' requirements, an important milestone on the path to providing economic shape memory steel alloys for industrial applications -- in other words, manufacturing them by the ton.

The long road from laboratory to finished product

Christoph Czaderski, of Empa's Engineering Structures Laboratory, believes that iron-based SMA materials have a promising future in the building industry since the process of pre-stressing is simpler and therefore cheaper than in conventional techniques. In addition they may allow engineers to create pre-stressed structures which are impossible or very difficult to achieve using conventional techniques. These include the use of short fibre concrete, near surface mounted laminates, column wrapping and ribbed armouring steel. A feasibility study financed by the Commission for Technology and Innovation (CTI) recently showed that it is possible to produce the new alloys on an industrial scale, not just a few kilos for laboratory use. The manufacturing process has been developed in collaboration with Leoben University (Austria), the Technical University Bergakademie Freiberg (Germany), and the German company G. Rau GmbH.

The working of cast ingots, each about 100 kg in weight, into thin strips around 2 mm thick or ribbed armouring steel rods at temperatures over 1000° calls for high degree of technical knowledge, and the appropriate infrastructure. The working process also needs to be adapted for use with the novel alloys. The metal strips produced in this way demonstrated their capabilities in the tests which followed, during which they were inserted into slits cut in the surface of concrete beams and fixed with adhesive. To carry forward the developments made at Empa, a start-up company, re-Fer AG, has been set up. This will in future produce and distribute iron-based SMA for the construction industry. The cost of the new products is expected to be about the same order of magnitude as that for stainless steel based materials.


Story Source:

The above story is based on materials provided by Empa Swiss Federal Laboratories for Materials Science and Technology. Note: Materials may be edited for content and length.


Cite This Page:

Empa Swiss Federal Laboratories for Materials Science and Technology. "Materials for the building industry: A shape-conscious alloy." ScienceDaily. ScienceDaily, 20 June 2014. <www.sciencedaily.com/releases/2014/06/140620102137.htm>.
Empa Swiss Federal Laboratories for Materials Science and Technology. (2014, June 20). Materials for the building industry: A shape-conscious alloy. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2014/06/140620102137.htm
Empa Swiss Federal Laboratories for Materials Science and Technology. "Materials for the building industry: A shape-conscious alloy." ScienceDaily. www.sciencedaily.com/releases/2014/06/140620102137.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) — In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) — Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) — The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) — NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins