Featured Research

from universities, journals, and other organizations

Equations reveal rebellious rhythms at the heart of nature

Date:
June 20, 2014
Source:
Lancaster University
Summary:
Physicists are using equations to reveal the hidden complexities of the human body. From the beating of our hearts to the proper functioning of our brains, many systems in nature depend on collections of 'oscillators'; perfectly-coordinated, rhythmic systems working together in flux, like the cardiac muscle cells in the heart.

Illustration of neurons (stock image). "Because oscillations occur in myriads of systems in nature and engineering, these results have broad applicability," said Professor Aneta Stefanovska, of a recent study that uses equations to reveal the hidden complexities of the human body.
Credit: © Sergey Nivens / Fotolia

Physicists are using equations to reveal the hidden complexities of the human body.

Related Articles


From the beating of our hearts to the proper functioning of our brains, many systems in nature depend on collections of 'oscillators'; perfectly-coordinated, rhythmic systems working together in flux, like the cardiac muscle cells in the heart.

Unless they act together, not much happens. But when they do, powerful changes occur. Cooperation between neurons results in brain waves and cognition, synchronized contractions of cardiac cells cause the whole heart to contract and pump the blood around the body. Lasers would not function without all the atomic oscillators acting in unison. Soldiers even have to break step when they reach a bridge in case oscillations caused by their marching feet cause the bridge to collapse.

But sometimes those oscillations go wrong.

Writing in the journal Nature Communications , scientists at Lancaster University report the possibility of "glassy states" and a "super-relaxation" phenomenon, which might appear in the networks of tiny oscillators within the brain, heart and other oscillating entities.

To uncover these phenomena, they took a new approach to the solution of a set of equations proposed by the Japanese scientist Yoshiki Kuramoto in the 1970s. His theory showed it was possible in principle to predict the properties of a system as a whole from a knowledge of how oscillators interacted with each other on an individual basis.

Therefore, by looking at how the microscopic cardiac muscle cells interact we should be able to deduce whether the heart as a whole organ will contract properly and pump the blood round. Similarly, by looking at how the microscopic neurons in the brain interact, we might be able to understand the origins of whole-brain phenomena like thoughts, or dreams, or amnesia, or epileptic fits.

Physicists Dmytro Iatsenko , Professor Peter McClintock, and Professor Aneta Stefanovska, have reported a far more general solution of the Kuramoto equations than anyone has achieved previously, with some quite unexpected results.

One surprise is that the oscillators can form "glassy" states, where they adjust the tempos of their rhythms but otherwise remain uncoordinated with each other, thus giving birth to some kind of "synchronous disorder" rather like the disordered molecular structure of window glass. Furthermore and even more astonishingly, under certain circumstances the oscillators can behave in a totally independent manner despite being tightly coupled together, the phenomenon the authors call "super-relaxation."

These results raise intriguing questions. For example, what does it mean if the neurons of your brain get into a glassy state?

Dmytro Iatsenko, the PhD student who solved the equations, admitted the results posed more questions than they answered.

"It is not fully clear yet what it might mean if, for example, this happened in the human body, but if the neurons in the brain could get into a "glassy state" there might be some strong connection with states of the mind, or possibly with disease."

Lead scientist Professor Aneta Stefanovska said: "With populations of oscillators, the exact moment when something happens is far more important than the strength of the individual event. This new work reveals exotic changes that can happen to large-scale oscillations as a result of alterations in the relationships between the microscopic oscillators. Because oscillations occur in myriads of systems in nature and engineering, these results have broad applicability."

Professor Peter McClintock said: "The outcome of the work opens doors to many new investigations, and will bring enhanced understanding to several seemingly quite different areas of science."


Story Source:

The above story is based on materials provided by Lancaster University. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Iatsenko, P.V.E. McClintock, A. Stefanovska. Glassy states and super-relaxation in populations of coupled phase oscillators. Nature Communications, 2014; 5 DOI: 10.1038/ncomms5118

Cite This Page:

Lancaster University. "Equations reveal rebellious rhythms at the heart of nature." ScienceDaily. ScienceDaily, 20 June 2014. <www.sciencedaily.com/releases/2014/06/140620120339.htm>.
Lancaster University. (2014, June 20). Equations reveal rebellious rhythms at the heart of nature. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2014/06/140620120339.htm
Lancaster University. "Equations reveal rebellious rhythms at the heart of nature." ScienceDaily. www.sciencedaily.com/releases/2014/06/140620120339.htm (accessed October 26, 2014).

Share This



More Health & Medicine News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins