Featured Research

from universities, journals, and other organizations

Brain's balancing act discovered: Wiring determines if neurons communicate

Date:
June 22, 2014
Source:
University of California, San Diego Health Sciences
Summary:
A fundamental mechanism by which the brain maintains its internal balance has been discovered by researchers. The mechanism involves the brain's most basic inner wiring and the processes that control whether a neuron relays information to other neurons or suppresses the transmission of information.

This fluorescent image shows excitatory neurons in green and inhibitory neurons in magenta.
Credit: UC San Diego School of Medicine

Researchers at the University of California, San Diego School of Medicine have discovered a fundamental mechanism by which the brain maintains its internal balance. The mechanism, described in the June 22 advanced online publication of the journal Nature, involves the brain's most basic inner wiring and the processes that control whether a neuron relays information to other neurons or suppresses the transmission of information.

Related Articles


Specifically, the scientists have shown that there is a constant ratio between the total amount of pro-firing stimulation that a neuron receives from the hundreds or thousands of excitatory neurons that feed into it, and the total amount of red-light stop signaling that it receives from the equally numerous inhibitory neurons.

This constant ratio, called the E/I ratio, was known to exist for individual neurons at a given time. This study goes a step further and shows that the E/I ratio is constant across multiple neurons in the cortex of mice and likely also humans, since the fundamental architecture of mammalian brains is highly conserved across species.

"Neurons in our brain drive by pushing the brake and the accelerator at the same time," said Massimo Scanziani, PhD, professor of neurosciences, Howard Hughes Medical Institute investigator and co-author. "This means that there is no stimulus that you can apply that will activate purely excitatory neurons or purely inhibitory ones."

"There is always a tug-of-war. It's weird but very clever. It allows the brain to exert very subtle control on our response to stimuli." For example, Scanziani said it prevents both runaway neuronal firing (excitation) and permanent quiescence (inhibition) because excitation and inhibition are always coupled.

In experiments, the scientists also showed how the brain maintains a constant E/I ratio across neurons: The adjustment is carried out by the inhibitory neurons through the appropriate strengthening or weakening of inhibitory synapses. A synapse is the gap or juncture between two neurons and synaptic strength refers to the degree to which a passed signal is amplified in the juncture.

"Our study shows that the inhibitory neurons are the master regulators that contact hundreds or thousands of cells and make sure that the inhibitory synapses at each of these contacts is matched to the different amounts of excitation that these cells are receiving," Scanziani explained. If, for example, the level of excitatory stimulation that a nerve cell is receiving is doubled, the inhibitory synapses over a period of a few days will also double their strength.

In terms of clinical applications, the scientists said that neurological diseases such as autism, epilepsy and schizophrenia are believed to be a problem, at least in part, of the brain's ability to maintain an optimal E/I ratio.

"If this E/I balance is broken, it completely alters your perception of the world," Scanziani said. "You will be less able to adjust and adapt appropriately to the range of stimulation in a normal day without being overwhelmed or completely oblivious, and E/I imbalances may be most easily noticed in social interactions because these interactions require such nuance and subtle adjusting."

Scientists have also proposed that some neurodegenerative diseases, such as Parkinson's and Huntington's disease, may be associated with a shift in the E/I balance.

Minghan Xue, a postdoctoral researcher in neurobiology and the study's lead author, said "now that we know how this E/I balance is regulated in a normal brain, we can begin to understand what goes wrong in the diseased state. It paves the way for interventions that might restore the balance in the brain."


Story Source:

The above story is based on materials provided by University of California, San Diego Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mingshan Xue, Bassam V. Atallah, Massimo Scanziani. Equalizing excitation–inhibition ratios across visual cortical neurons. Nature, 2014; DOI: 10.1038/nature13321

Cite This Page:

University of California, San Diego Health Sciences. "Brain's balancing act discovered: Wiring determines if neurons communicate." ScienceDaily. ScienceDaily, 22 June 2014. <www.sciencedaily.com/releases/2014/06/140622142118.htm>.
University of California, San Diego Health Sciences. (2014, June 22). Brain's balancing act discovered: Wiring determines if neurons communicate. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2014/06/140622142118.htm
University of California, San Diego Health Sciences. "Brain's balancing act discovered: Wiring determines if neurons communicate." ScienceDaily. www.sciencedaily.com/releases/2014/06/140622142118.htm (accessed November 1, 2014).

Share This



More Mind & Brain News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Alzheimer’s Hope

Alzheimer’s Hope

Ivanhoe (Oct. 31, 2014) A new drug, BCI-838 offers new hope to halt and possibly reverse the damage of Alzheimer’s disease. Video provided by Ivanhoe
Powered by NewsLook.com
Studying Effects of Music on Dementia Patients

Studying Effects of Music on Dementia Patients

AP (Oct. 30, 2014) The University of Wisconsin-Milwaukee is studying the popular Music and Memory program to see if music, which helps improve the mood of Alzheimer's patients, can also reduce the use of prescription drugs for those suffering from dementia. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Techy Tots Are Forefront of London's Baby Show

Techy Tots Are Forefront of London's Baby Show

AP (Oct. 28, 2014) Moms and Dads get a more hands-on approach to parenting with tech-centric products for raising their little ones. (Oct. 28) Video provided by AP
Powered by NewsLook.com
Cocoa Could Be As Good For Memory As It Is For A Sweet Tooth

Cocoa Could Be As Good For Memory As It Is For A Sweet Tooth

Newsy (Oct. 27, 2014) Researchers have come up with another reason why dark chocolate is good for your health. A substance in the treat can reportedly help with memory. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins