Featured Research

from universities, journals, and other organizations

Theoretical and experimental demonstration of the electrocatalytic activity of boron nitride thin films for oxygen reduction reaction

Date:
June 23, 2014
Source:
National Institute for Materials Science
Summary:
Hydrogen-oxygen fuel cells are the ultimate clean power-generating device, which extract electric power from hydrogen and oxygen with high efficiency and emit only water as waste. However, there are still many challenges to overcome before achieving wide use of this technology. Scientists have now successfully demonstrated a new approach toward a non-precious metal oxygen reduction catalyst for fuel cells.

A Japanese research team has successfully demonstrated a new approach toward a non-precious metal oxygen reduction catalyst for fuel cells.

Related Articles


The research was conducted by a group of researchers led by Professor Kohei Uosaki, a NIMS Fellow at the International Center for Materials Nanoarchitectonics and the Global Research Center for Environment and Energy based on Nanomaterials Science (both of which are affiliated with the National Institute for Materials Science) in partnership with another research group led by Professor Tetsuya Taketsugu at the Faculty of Science, Hokkaido University. The team advocated and successfully demonstrated a theory that when boron nitride (BN), which is originally an insulating material, is placed on a gold surface, it can function as an electrocatalyst for the oxygen reduction reaction -- an important reaction in fuel cells.

Hydrogen-oxygen fuel cells are the ultimate clean power-generating device, which extract electric power from hydrogen and oxygen with high efficiency and emit only water as waste. However, there are still many challenges to overcome before achieving wide use of this technology. One such challenge is the slow rate of the oxygen-reduction reaction at the oxygen electrode -- that is, low reaction efficiency. Platinum has been widely used as a catalyst for promoting this reaction. However, as platinum is expensive, limited in quantity and involves stability problems, efforts have been made worldwide toward the development of a new catalyst that can solve this challenge without using platinum or other precious metals. Yet, none of the catalysts that have been developed thus far has reached a satisfactory level. Accordingly, there has been a call for initiatives to develop a completely new type of catalyst, using materials that have never been thought of as catalyst materials.

The two research groups worked together on the development of a precious metal-free catalyst through a combination of theoretical and experimental approaches from the perspective of elements strategy. In their theoretical research, the researchers discovered that when BN, which is originally an insulating material, is placed on a gold surface, its electronic state changes, it becomes conductive, and oxygen molecules are absorbed on BN stably. They further calculated changes in energy at different stages in the oxygen-reduction reaction process on the surface and found that BN has the potential to function as an oxygen-reduction catalyst. Then, they prepared various types of BN (e.g. nanosheets, nanotubes) placed on a gold surface, and examined the activity for the oxygen-reduction reaction by a rotating disk electrode. They observed a maximum of about 270 mV positive shift for oxygen reduction current to be observed at the gold electrode. On the other hand, no such catalyst activity was observed when a carbon was used as the substrate. Thus, they demonstrated that BN-gold interaction is a key factor for BN to function as an electrocatalyst for the oxygen reduction reaction.

Although the new catalyst is still less reactive than platinum, the researchers succeeded in showing an extremely promising direction in the process of searching for and designing a new catalyst material, through the combination of theoretical calculation and experiments. This approach is expected to lead to the future development of materials for an electrode for fuel cells without using platinum.

This research was conducted as part of the "Elements Strategy Initiative for Industry-Academia-Government Collaboration: Creation of Precious Metal-Free Nano-Hybrid Catalyst" and the "Environmental Technology Development Program with the Use of Nanotechnology," sponsored by the Japanese Ministry of Education, Culture, Sports, Science and Technology.


Story Source:

The above story is based on materials provided by National Institute for Materials Science. Note: Materials may be edited for content and length.


Journal References:

  1. Kohei Uosaki, Ganesan Elumalai, Hidenori Noguchi, Takuya Masuda, Andrey Lyalin, Akira Nakayama, Tetsuya Taketsugu. Boron Nitride Nanosheet on Gold as an Electrocatalyst for Oxygen Reduction Reaction: Theoretical Suggestion and Experimental Proof. Journal of the American Chemical Society, 2014; 136 (18): 6542 DOI: 10.1021/ja500393g
  2. Ganesan Elumalai, Hidenori Noguchi, Kohei Uosaki. Electrocatalytic activity of various types of h-BN for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2014; 16 (27): 13755 DOI: 10.1039/C4CP00402G

Cite This Page:

National Institute for Materials Science. "Theoretical and experimental demonstration of the electrocatalytic activity of boron nitride thin films for oxygen reduction reaction." ScienceDaily. ScienceDaily, 23 June 2014. <www.sciencedaily.com/releases/2014/06/140623091643.htm>.
National Institute for Materials Science. (2014, June 23). Theoretical and experimental demonstration of the electrocatalytic activity of boron nitride thin films for oxygen reduction reaction. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2014/06/140623091643.htm
National Institute for Materials Science. "Theoretical and experimental demonstration of the electrocatalytic activity of boron nitride thin films for oxygen reduction reaction." ScienceDaily. www.sciencedaily.com/releases/2014/06/140623091643.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins