Featured Research

from universities, journals, and other organizations

Sound waves harnessed to enable precision micro- and nano-manufacturing

Date:
June 24, 2014
Source:
RMIT University
Summary:
In a breakthrough discovery, researchers have harnessed the power of sound waves to enable precision micro- and nano-manufacturing. The researchers have demonstrated how high-frequency sound waves can be used to precisely control the spread of thin film fluid along a specially designed chip.

Researcher Dr Amgad Rezk with the lithium niobate chip.
Credit: Image courtesy of RMIT University

In a breakthrough discovery, researchers at RMIT University in Melbourne, Australia, have harnessed the power of sound waves to enable precision micro- and nano-manufacturing.

The researchers have demonstrated how high-frequency sound waves can be used to precisely control the spread of thin film fluid along a specially-designed chip, in a paper published today in Proceedings of the Royal Society A.

With thin film technology the bedrock of microchip and microstructure manufacturing, the pioneering research offers a significant advance -- potential applications range from thin film coatings for paint and wound care to 3D printing, micro-casting and micro-fluidics.

Professor James Friend, Director of the MicroNano Research Facility at RMIT, said the researchers had developed a portable system for precise, fast and unconventional micro- and nano-fabrication.

"By tuning the sound waves, we can create any pattern we want on the surface of a microchip," Professor Friend said.

"Manufacturing using thin film technology currently lacks precision - structures are physically spun around to disperse the liquid and coat components with thin film.

"We've found that thin film liquid either flows towards or away from high-frequency sound waves, depending on its thickness.

"We not only discovered this phenomenon but have also unravelled the complex physics behind the process, enabling us to precisely control and direct the application of thin film liquid at a micro and nano-scale."

The new process, which the researchers have called "acoustowetting," works on a chip made of lithium niobate - a piezoelectric material capable of converting electrical energy into mechanical pressure.

The surface of the chip is covered with microelectrodes and the chip is connected to a power source, with the power converted to high-frequency sound waves. Thin film liquid is added to the surface of the chip, and the sound waves are then used to control its flow.

The research shows that when the liquid is ultra-thin - at nano and sub-micro depths -- it flows away from the high-frequency sound waves.

The flow reverses at slightly thicker dimensions, moving towards the sound waves. But at a millimetre or more in depth, the flow reverses again, moving away.

Video: http://www.youtube.com/watch?v=IQ762VTxD2g&feature=youtu.be


Story Source:

The above story is based on materials provided by RMIT University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Amgad R. Rezk, Ofer Manor; Leslie Y. Yeo, and James R. Friend. Double Flow Reversal in Thin Liquid Films Driven by MHz Order Surface Vibration. Proceedings of the Royal Society A, 25 June 2014

Cite This Page:

RMIT University. "Sound waves harnessed to enable precision micro- and nano-manufacturing." ScienceDaily. ScienceDaily, 24 June 2014. <www.sciencedaily.com/releases/2014/06/140624092522.htm>.
RMIT University. (2014, June 24). Sound waves harnessed to enable precision micro- and nano-manufacturing. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2014/06/140624092522.htm
RMIT University. "Sound waves harnessed to enable precision micro- and nano-manufacturing." ScienceDaily. www.sciencedaily.com/releases/2014/06/140624092522.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com
New Corvette Can Secretly Record Convos And Get You Arrested

New Corvette Can Secretly Record Convos And Get You Arrested

Newsy (Sep. 28, 2014) The 2015 Corvette features valet mode – which allows the owner to secretly record audio and video – but in many states that practice is illegal. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins