Featured Research

from universities, journals, and other organizations

Sound waves harnessed to enable precision micro- and nano-manufacturing

Date:
June 24, 2014
Source:
RMIT University
Summary:
In a breakthrough discovery, researchers have harnessed the power of sound waves to enable precision micro- and nano-manufacturing. The researchers have demonstrated how high-frequency sound waves can be used to precisely control the spread of thin film fluid along a specially designed chip.

Researcher Dr Amgad Rezk with the lithium niobate chip.
Credit: Image courtesy of RMIT University

In a breakthrough discovery, researchers at RMIT University in Melbourne, Australia, have harnessed the power of sound waves to enable precision micro- and nano-manufacturing.

The researchers have demonstrated how high-frequency sound waves can be used to precisely control the spread of thin film fluid along a specially-designed chip, in a paper published today in Proceedings of the Royal Society A.

With thin film technology the bedrock of microchip and microstructure manufacturing, the pioneering research offers a significant advance -- potential applications range from thin film coatings for paint and wound care to 3D printing, micro-casting and micro-fluidics.

Professor James Friend, Director of the MicroNano Research Facility at RMIT, said the researchers had developed a portable system for precise, fast and unconventional micro- and nano-fabrication.

"By tuning the sound waves, we can create any pattern we want on the surface of a microchip," Professor Friend said.

"Manufacturing using thin film technology currently lacks precision - structures are physically spun around to disperse the liquid and coat components with thin film.

"We've found that thin film liquid either flows towards or away from high-frequency sound waves, depending on its thickness.

"We not only discovered this phenomenon but have also unravelled the complex physics behind the process, enabling us to precisely control and direct the application of thin film liquid at a micro and nano-scale."

The new process, which the researchers have called "acoustowetting," works on a chip made of lithium niobate - a piezoelectric material capable of converting electrical energy into mechanical pressure.

The surface of the chip is covered with microelectrodes and the chip is connected to a power source, with the power converted to high-frequency sound waves. Thin film liquid is added to the surface of the chip, and the sound waves are then used to control its flow.

The research shows that when the liquid is ultra-thin - at nano and sub-micro depths -- it flows away from the high-frequency sound waves.

The flow reverses at slightly thicker dimensions, moving towards the sound waves. But at a millimetre or more in depth, the flow reverses again, moving away.

Video: http://www.youtube.com/watch?v=IQ762VTxD2g&feature=youtu.be


Story Source:

The above story is based on materials provided by RMIT University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Amgad R. Rezk, Ofer Manor; Leslie Y. Yeo, and James R. Friend. Double Flow Reversal in Thin Liquid Films Driven by MHz Order Surface Vibration. Proceedings of the Royal Society A, 25 June 2014

Cite This Page:

RMIT University. "Sound waves harnessed to enable precision micro- and nano-manufacturing." ScienceDaily. ScienceDaily, 24 June 2014. <www.sciencedaily.com/releases/2014/06/140624092522.htm>.
RMIT University. (2014, June 24). Sound waves harnessed to enable precision micro- and nano-manufacturing. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2014/06/140624092522.htm
RMIT University. "Sound waves harnessed to enable precision micro- and nano-manufacturing." ScienceDaily. www.sciencedaily.com/releases/2014/06/140624092522.htm (accessed September 1, 2014).

Share This




More Matter & Energy News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins