Featured Research

from universities, journals, and other organizations

Sound waves harnessed to enable precision micro- and nano-manufacturing

Date:
June 24, 2014
Source:
RMIT University
Summary:
In a breakthrough discovery, researchers have harnessed the power of sound waves to enable precision micro- and nano-manufacturing. The researchers have demonstrated how high-frequency sound waves can be used to precisely control the spread of thin film fluid along a specially designed chip.

Researcher Dr Amgad Rezk with the lithium niobate chip.
Credit: Image courtesy of RMIT University

In a breakthrough discovery, researchers at RMIT University in Melbourne, Australia, have harnessed the power of sound waves to enable precision micro- and nano-manufacturing.

The researchers have demonstrated how high-frequency sound waves can be used to precisely control the spread of thin film fluid along a specially-designed chip, in a paper published today in Proceedings of the Royal Society A.

With thin film technology the bedrock of microchip and microstructure manufacturing, the pioneering research offers a significant advance -- potential applications range from thin film coatings for paint and wound care to 3D printing, micro-casting and micro-fluidics.

Professor James Friend, Director of the MicroNano Research Facility at RMIT, said the researchers had developed a portable system for precise, fast and unconventional micro- and nano-fabrication.

"By tuning the sound waves, we can create any pattern we want on the surface of a microchip," Professor Friend said.

"Manufacturing using thin film technology currently lacks precision ­- structures are physically spun around to disperse the liquid and coat components with thin film.

"We've found that thin film liquid either flows towards or away from high-frequency sound waves, depending on its thickness.

"We not only discovered this phenomenon but have also unravelled the complex physics behind the process, enabling us to precisely control and direct the application of thin film liquid at a micro and nano-scale."

The new process, which the researchers have called "acoustowetting," works on a chip made of lithium niobate ­- a piezoelectric material capable of converting electrical energy into mechanical pressure.

The surface of the chip is covered with microelectrodes and the chip is connected to a power source, with the power converted to high-frequency sound waves. Thin film liquid is added to the surface of the chip, and the sound waves are then used to control its flow.

The research shows that when the liquid is ultra-thin ­- at nano and sub-micro depths -- it flows away from the high-frequency sound waves.

The flow reverses at slightly thicker dimensions, moving towards the sound waves. But at a millimetre or more in depth, the flow reverses again, moving away.

Video: http://www.youtube.com/watch?v=IQ762VTxD2g&feature=youtu.be


Story Source:

The above story is based on materials provided by RMIT University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Amgad R. Rezk, Ofer Manor; Leslie Y. Yeo, and James R. Friend. Double Flow Reversal in Thin Liquid Films Driven by MHz Order Surface Vibration. Proceedings of the Royal Society A, 25 June 2014

Cite This Page:

RMIT University. "Sound waves harnessed to enable precision micro- and nano-manufacturing." ScienceDaily. ScienceDaily, 24 June 2014. <www.sciencedaily.com/releases/2014/06/140624092522.htm>.
RMIT University. (2014, June 24). Sound waves harnessed to enable precision micro- and nano-manufacturing. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2014/06/140624092522.htm
RMIT University. "Sound waves harnessed to enable precision micro- and nano-manufacturing." ScienceDaily. www.sciencedaily.com/releases/2014/06/140624092522.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins