Featured Research

from universities, journals, and other organizations

Ultra-stiff and lightweight: Carbon-fiber epoxy honeycombs mimic material performance of balsa wood

Date:
June 25, 2014
Source:
Harvard University
Summary:
For centuries, the fast-growing balsa tree has been prized for its light weight and stiffness relative to density. But balsa wood is expensive and natural variations in the grain can be an impediment to achieving the increasingly precise performance requirements of turbine blades and other sophisticated applications. Materials scientists have now developed cellular composite materials of unprecedented light weight and stiffness.

Left: Optical images of square, hexagonal, and triangular honeycomb structures composed of SiC-filled epoxy. Scale bars are 2 mm. Center and right: Optical images of a triangular honeycomb structure composed of SiC/C-filled epoxy, which reveal clear evidence of highly aligned carbon fibers oriented along the print direction. The scale bars are 500 μm.
Credit: Courtesy of Brett G. Compton, Harvard University

In wind farms across North America and Europe, sleek turbines equipped with state-of-the-art technology convert wind energy into electric power. But tucked inside the blades of these feats of modern engineering is a decidedly low-tech core material: balsa wood.

Related Articles


Like other manufactured products that use sandwich panel construction to achieve a combination of light weight and strength, turbine blades contain carefully arrayed strips of balsa wood from Ecuador, which provides 95 percent of the world's supply.

For centuries, the fast-growing balsa tree has been prized for its light weight and stiffness relative to density. But balsa wood is expensive and natural variations in the grain can be an impediment to achieving the increasingly precise performance requirements of turbine blades and other sophisticated applications.

As turbine makers produce ever-larger blades -- the longest now measure 75 meters, almost matching the wingspan of an Airbus A380 jetliner -- they must be engineered to operate virtually maintenance-free for decades. In order to meet more demanding specifications for precision, weight, and quality consistency, manufacturers are searching for new sandwich construction material options.

Now, using a cocktail of fiber-reinforced epoxy-based thermosetting resins and 3D extrusion printing techniques, materials scientists at the Harvard School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering have developed cellular composite materials of unprecedented light weight and stiffness. Because of their mechanical properties and the fine-scale control of fabrication, the researchers say these new materials mimic and improve on balsa, and even the best commercial 3D-printed polymers and polymer composites available.

A paper describing their results has been published online in the journal Advanced Materials.

Until now, 3D printing has been developed for thermo plastics and UV-curable resins -- materials that are not typically considered as engineering solutions for structural applications. "By moving into new classes of materials like epoxies, we open up new avenues for using 3D printing to construct lightweight architectures," says principal investigator Jennifer A. Lewis, the Hansjφrg Wyss Professor of Biologically Inspired Engineering at Harvard SEAS. "Essentially, we are broadening the materials palette for 3D printing."

"Balsa wood has a cellular architecture that minimizes its weight since most of the space is empty and only the cell walls carry the load. It therefore has a high specific stiffness and strength," explains Lewis, who in addition to her role at Harvard SEAS is also a Core Faculty Member at the Wyss Institute. "We've borrowed this design concept and mimicked it in an engineered composite."

Lewis and Brett G. Compton, a former postdoctoral fellow in her group, developed inks of epoxy resins, spiked with viscosity-enhancing nanoclay platelets and a compound called dimethyl methylphosphonate, and then added two types of fillers: tiny silicon carbide "whiskers" and discrete carbon fibers. Key to the versatility of the resulting fiber-filled inks is the ability to control the orientation of the fillers.

The direction that the fillers are deposited controls the strength of the materials (think of the ease of splitting a piece of firewood lengthwise versus the relative difficulty of chopping on the perpendicular against the grain).

Lewis and Compton have shown that their technique yields cellular composites that are as stiff as wood, 10 to 20 times stiffer than commercial 3D-printed polymers, and twice as strong as the best printed polymer composites. The ability to control the alignment of the fillers means that fabricators can digitally integrate the composition, stiffness, and toughness of an object with its design.

"This paper demonstrates, for the first time, 3D printing of honeycombs with fiber-reinforced cell walls," said Lorna Gibson, a professor of materials science and mechanical engineering at the Massachusetts Institute of Technology and one of world's leading experts in cellular composites, who was not involved in this research. "Of particular significance is the way that the fibers can be aligned, through control of the fiber aspect ratio -- the length relative to the diameter -- and the nozzle diameter. This marks an important step forward in designing engineering materials that mimic wood, long known for its remarkable mechanical properties for its weight."

"As we gain additional levels of control in filler alignment and learn how to better integrate that orientation into component design, we can further optimize component design and improve materials efficiency," adds Compton, who is now a staff scientist in additive manufacturing at Oak Ridge National Laboratory. "Eventually, we will be able to use 3D printing technology to change the degree of fiber filler alignment and local composition on the fly.

The work could have applications in many fields, including the automotive industry where lighter materials hold the key to achieving aggressive government-mandated fuel economy standards. According to one estimate, shedding 110 pounds from each of the 1 billion cars on the road worldwide could produce $40 billion in annual fuel savings.

3D printing has the potential to radically change manufacturing in other ways too. Lewis says the next step will be to test the use of thermosetting resins to create different kinds of architectures, especially by exploiting the technique of blending fillers and precisely aligning them. This could lead to advances not only in structural materials, but also in conductive composites.

Previously, Lewis has conducted groundbreaking research in the 3D printing of tissue constructs with vasculature and lithium-ion microbatteries.

Primary support for the cellular composites work came from the BASF North American Center for Research on Advanced Materials at Harvard.

Additional support was provided by the Materials Research Science and Engineering Center at Harvard, funded by the National Science Foundation (DMR 0820484).

Video: https://www.youtube.com/watch?v=pnGPYwNM4rE


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Brett G. Compton, Jennifer A. Lewis. 3D-Printing of Lightweight Cellular Composites. Advanced Materials, 2014; DOI: 10.1002/adma.201401804

Cite This Page:

Harvard University. "Ultra-stiff and lightweight: Carbon-fiber epoxy honeycombs mimic material performance of balsa wood." ScienceDaily. ScienceDaily, 25 June 2014. <www.sciencedaily.com/releases/2014/06/140625151548.htm>.
Harvard University. (2014, June 25). Ultra-stiff and lightweight: Carbon-fiber epoxy honeycombs mimic material performance of balsa wood. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2014/06/140625151548.htm
Harvard University. "Ultra-stiff and lightweight: Carbon-fiber epoxy honeycombs mimic material performance of balsa wood." ScienceDaily. www.sciencedaily.com/releases/2014/06/140625151548.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins