Featured Research

from universities, journals, and other organizations

Brain circuits involved in stress-induced fevers identified

Date:
June 26, 2014
Source:
Cell Press
Summary:
When we feel mentally stressed, we often also feel physiological changes, including an increase in body temperature. This increase in body temperature is known as psychological stress-induced hyperthermia. Stress for people in today's society can last a long time and cause a chronic increase in body temperature, a condition called psychogenic fever. Researchers now have identified a key neural circuit connection in the brain that's responsible for the development of psychological stress-induced hyperthermia.

When we feel mentally stressed, we often also feel physiological changes, including a faster heart rate and an increase in body temperature. This increase in body temperature is known as psychological stress-induced hyperthermia, which is a basic stress response broadly observed in mammals. The response is helpful for warming up the muscles during "fight or flight" situations, such as when wild animals face their enemies; however, stress for people in today's society can last a long time and cause a chronic increase in body temperature, a condition called psychogenic fever, which brings on intense fatigue.

Now researchers publishing online on June 26 in the Cell Press journal Cell Metabolism have identified a key neural circuit connection in the brain that's responsible for the development of psychological stress-induced hyperthermia and likely also plays a role in chronic psychogenic fever.

The researchers, led by Dr. Kazuhiro Nakamura of Kyoto University, in Japan, used a social defeat stress test in rats, which is similar to human social stress, to induce psychological stress-induced hyperthermia. Inhibiting neurons in either of two brain regions -- the dorsomedial hypothalamus and the rostral medullary raphe -- eliminated stress-induced heat production in brown fat tissue as well as stress-induced increases in the rats' body temperature. (While white fat normally stores calories, brown fat burns them and generates heat in the process.) Alternatively, stimulating the neurons that wire between these two brain regions caused brown fat tissue to produce heat and increased blood pressure and heart rate, similar to the effects of stress.

"Many people with psychogenic fever, especially many teenagers, suffer from chronic increases in their body temperature that last more than a month," says Dr. Nakamura. "Our study revealed a fundamental central circuit mechanism underlying psychological stress-induced hyperthermia, and this mechanism may be important in understanding how psychogenic fever develops. It may also be important for designing clinical approaches to treat it."


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Naoya Kataoka, Hiroyuki Hioki, Takeshi Kaneko, Kazuhiro Nakamura. Psychological Stress Activates a Dorsomedial Hypothalamus-Medullary Raphe Circuit Driving Brown Adipose Tissue Thermogenesis and Hyperthermia. Cell Metabolism, 2014; DOI: 10.1016/j.cmet.2014.05.018

Cite This Page:

Cell Press. "Brain circuits involved in stress-induced fevers identified." ScienceDaily. ScienceDaily, 26 June 2014. <www.sciencedaily.com/releases/2014/06/140626121842.htm>.
Cell Press. (2014, June 26). Brain circuits involved in stress-induced fevers identified. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2014/06/140626121842.htm
Cell Press. "Brain circuits involved in stress-induced fevers identified." ScienceDaily. www.sciencedaily.com/releases/2014/06/140626121842.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins