Featured Research

from universities, journals, and other organizations

Salmonella's Achilles' heel: Reliance on single food source to stay potent

Date:
June 26, 2014
Source:
Ohio State University
Summary:
A potential Achilles’ heel for Salmonella has been identified by researchers: the bacteria’s reliance on a single food source to remain fit in the inflamed intestine. When these wily bugs can’t access this nutrient, they become 1,000 times less effective at sustaining disease than when they’re fully nourished.

Scientists have identified a potential Achilles’ heel for Salmonella – the bacteria’s reliance on a single food source to remain fit in the inflamed intestine.

Related Articles


When these wily bugs can’t access this nutrient, they become 1,000 times less effective at sustaining disease than when they’re fully nourished.

The research suggests that blocking activation of one of five genes that transport the nutrient to Salmonella cells could be a new strategy to fight infection.

“For some reason, Salmonella really wants this nutrient, and if it can’t get this one, it’s in really bad shape,” said Brian Ahmer, associate professor of microbial infection and immunity at The Ohio State University and lead author of the study. “If you could block Salmonella from getting that nutrient, you’d really stop Salmonella.”

The research is published in the journal PLOS Pathogens.

Generally, most of the 42,000 Americans who report Salmonella infection annually ride out the gastroenteritis symptoms of diarrhea, fever, stomach cramps and vomiting for four to seven days, according to the Centers for Disease Control and Prevention. Antibiotics aren’t a recommended treatment for most infections because they kill good gut bacteria along with Salmonella.

The nutrient needed by Salmonella is composed of a sugar and amino acid stuck together, and is called fructose-asparagine. Its identification alone is also unusual: “It has never been discovered to be a nutrient for any organism,” Ahmer said.

Ahmer and colleagues found this important food source by first identifying the genes that Salmonella requires to stay alive during the active phase of gastroenteritis, when the inflamed gut produces symptoms of infection.

Using a genetic screening technique, the researchers found a cluster of five genes that had to be expressed to keep Salmonella from losing its fitness during gastroenteritis. They then determined that those vital genes work together to transport a nutrient into the bacterial cell and chop up the nutrient so it can be used as food.

The study refers to the pathogen’s fitness because it’s an all-encompassing word for Salmonella survival, growth and ability to inflict damage.

Identifying the nutrient that the genes acted upon was a bit tricky and involved some guessing, Ahmer said. The team realized that the Salmonella genes they found resembled genes in other bacteria with a similar function – transporting the nutrient fructose-lysine into E. coli. But seeing a difference between the genes, the researchers landed, with some luck, on fructose-asparagine.

The researchers ran numerous experiments in cell cultures and mice to observe what happened to Salmonella in the inflamed gut when these genes were mutated. Under differing conditions, Salmonella’s fitness dropped between 100- and 10,000-fold if it could not access fructose-asparagine, even if all of its other food sources were available.

“That was one of the big surprises: that there is only one nutrient source that is so important to Salmonella. For most bacteria, if we get rid of one nutrient acquisition system, they continue to grow on other nutrients,” Ahmer said. “In the gut, Salmonella can obtain hundreds of different nutrients. But without fructose-asparagine, it’s really unfit.”

Because of that sole source for survival, the genes needed for acquisition of this nutrient could be effective drug targets.

“Nobody’s ever looked at nutrient transporters as drug targets because it’s assumed that there will be hundreds more transporters, so it’s a pointless pursuit,” Ahmer said.

This kind of drug also holds promise because it would affect only Salmonella and leave the trillions of other microbes in the gut unaffected.

Ahmer and colleagues are continuing this work to address remaining questions, including the window of time in which access to the nutrient is most important for Salmonella’s survival as well as identifying human foods that contain high concentrations of fructose-asparagine.


Story Source:

The above story is based on materials provided by Ohio State University. The original article was written by Emily Caldwell. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mohamed M. Ali, David L. Newsom, Juan F. Gonzαlez, Anice Sabag-Daigle, Christopher Stahl, Brandi Steidley, Judith Dubena, Jessica L. Dyszel, Jenee N. Smith, Yakhya Dieye, Razvan Arsenescu, Prosper N. Boyaka, Steven Krakowka, Tony Romeo, Edward J. Behrman, Peter White, Brian M. M. Ahmer. Fructose-Asparagine Is a Primary Nutrient during Growth of Salmonella in the Inflamed Intestine. PLoS Pathogens, 2014; 10 (6): e1004209 DOI: 10.1371/journal.ppat.1004209

Cite This Page:

Ohio State University. "Salmonella's Achilles' heel: Reliance on single food source to stay potent." ScienceDaily. ScienceDaily, 26 June 2014. <www.sciencedaily.com/releases/2014/06/140626172712.htm>.
Ohio State University. (2014, June 26). Salmonella's Achilles' heel: Reliance on single food source to stay potent. ScienceDaily. Retrieved December 28, 2014 from www.sciencedaily.com/releases/2014/06/140626172712.htm
Ohio State University. "Salmonella's Achilles' heel: Reliance on single food source to stay potent." ScienceDaily. www.sciencedaily.com/releases/2014/06/140626172712.htm (accessed December 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Weirdest Health Studies Of 2014

The Weirdest Health Studies Of 2014

Newsy (Dec. 27, 2014) — One of this year's strangest studies found people prefer painful electric shocks to being alone with their thoughts. Video provided by Newsy
Powered by NewsLook.com
Healthier Lifestyles Could Prevent 4 In 10 Cancer Cases

Healthier Lifestyles Could Prevent 4 In 10 Cancer Cases

Newsy (Dec. 26, 2014) — If patients had led healthier lifestyles, Cancer Research UK found about 40 percent of cancer cases could have been prevented. Video provided by Newsy
Powered by NewsLook.com
When Healthy Eating Becomes Dangerous

When Healthy Eating Becomes Dangerous

Newsy (Dec. 26, 2014) — Experts say fad diets can lead to orthorexia, a disorder that can cause physical and emotional distress. Video provided by Newsy
Powered by NewsLook.com
FDA Issues New Warning About Pure Caffeine Powder Usage

FDA Issues New Warning About Pure Caffeine Powder Usage

Newsy (Dec. 24, 2014) — The FDA cites two deaths this year linked to pure caffeine powder as warnings of the potentially fatal substance. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins