Featured Research

from universities, journals, and other organizations

Important new information on genetic risk of sudden cardiac death

Date:
June 30, 2014
Source:
Massachusetts General Hospital
Summary:
New information about genes that may increase the risk of serious cardiac arrhythmias has been uncovered by two international research studies. The surprise findings point to calcium as also involved in resetting the heart after each beat. This represents a new avenue to pursue in the causes of arrhythmias, researchers say.

Two international research studies, both led by investigators affiliated with Massachusetts General Hospital (MGH) and the Broad Institute of MIT and Harvard, have uncovered new information about genes that may increase the risk of serious cardiac arrhythmias. The studies recently received back-to-back advance online publication in Nature Genetics and Nature Methods.

The Nature Genetics report identifies several new gene regions associated with variations in the QT interval -- a stage in the heart's electrical cycle that, if prolonged, increases the risk of drug-induced arrhythmias and sudden cardiac death. A surprising finding of that paper was the extent to which genes involved in calcium signaling influence the QT interval, the time from electrical activation of heart cells, which stimulates contraction, to the end of electrical relaxation.

"We have known that calcium signaling is critically important in regulating the contraction of muscle cells that generates the heartbeat," says Christopher Newton-Cheh, MD, MPH, of the MGH Center for Human Genetic Research and Cardiovascular Research Center, corresponding and co-senior author of the Nature Genetics report. "But finding that calcium is also involved in resetting the heart after each beat was a total surprise and represents a new avenue to pursue in the causes of arrhythmias."

The Nature Methods paper describes a novel approach to analyze and map the protein networks that drive cardiac repolarization -- the biological process disturbed in arrhythmias. By integrating this network with results from the Nature Genetics paper, the researchers were able to pinpoint specific genes involved in the biology of cardiac repolarization, which would have been challenging to accomplish from the genetics alone. This approach also allowed identification of three genetic variants involved in arrhythmias that had been missed in earlier studies.

"Like people, genes like to work in groups, and we used the newest technologies in genomics and proteomics to derive the working group of genes involved in processes that coordinate the beating of the heart and, when malfunctioning, can cause arrhythmias or sudden cardiac death," says Kasper Lage, PhD, of the MGH Department of Surgery and the Analytic and Translational Genetics Unit, co-senior author of the Nature Methods paper. "Potassium signaling is known to be involved in cardiac repolarization, but our network analysis also pointed to a calcium pump and two proteins regulating this pump as culprits. Finding that calcium signaling also plays a role in repolarization was an unexpected and intriguing discovery."

The Nature Genetics paper describes a meta-analysis of genome-wide association studies (GWAS) involving more than 100,000 individuals that identified 35 common gene variant locations -- 22 for the first time -- associated with alterations in the QT interval. Identifying a previously unknown role for calcium signaling in the QT interval constitutes, according to Newton-Cheh, "a quantum leap in our ability to study one of the major causes of death in people with heart failure -- which is well known to involve calcium abnormalities -- and an important cause of fatal arrhythmias that occur as a side effect of several medications."

The team behind the Nature Methods paper used quantitative interaction proteomics, which determines not just whether two proteins interact but the extent of their interaction, to map in mouse hearts networks of proteins encoded by known repolarization genes and confirmed those findings in frog eggs and in zebrafish. Integrating those results with the GWAS analysis revealed that 12 genes in locations identified by the Nature Genetics study encoded proteins in the network described in the Nature Methods paper, providing a strong link between genes well-established to cause rare sudden death syndromes and genes associated with common QT-interval variation in the general population.

"These studies are more than the sum of their parts, because their integration of proteomic networks with genomic findings catalyzes the interpretation of the genetic findings to reveal new biology relevant to dangerous arrhythmias," says Lage. "We also provide a general methodology to interpret genetic data using tissue-specific proteomics networks. Importantly, our analysis also shows that we are able to use computational algorithms such as one developed by Elizabeth Rossin, a co-lead author of our paper, to functionally interpret large genetic association studies.

"The genetics communities' worldwide now use Elizabeth's tools," he adds, "and our study rigorously follows up and confirms their predictions. This is an important result because the ongoing revolution in methods of sequencing genomes and mapping genetic variation has produced massive amounts of genetic data, and we need scalable computational ways to interpret these datasets to guide biological insight and therapeutic intervention. Our study proves the predictions made by our computational tools, thus supporting their ability to provide insight into the molecular networks perturbed by genetics in many common complex disorders."


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Journal References:

  1. Christopher Newton-Cheh et al. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nature Genetics, 2014; DOI: 10.1038/ng.3014
  2. Alicia Lundby, Elizabeth J Rossin, Annette B Steffensen, Moshe Rav Acha, Christopher Newton-Cheh, Arne Pfeufer, Stacey N Lynch, Sψren-Peter Olesen, Sψren Brunak, Patrick T Ellinor, J Wouter Jukema, Stella Trompet, Ian Ford, Peter W Macfarlane, Bouwe P Krijthe, Albert Hofman, Andrι G Uitterlinden, Bruno H Stricker, Hendrik M Nathoe, Wilko Spiering, Mark J Daly, Folkert W Asselbergs, Pim van der Harst, David J Milan, Paul I W de Bakker, Kasper Lage, Jesper V Olsen. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics. Nature Methods, 2014; DOI: 10.1038/nmeth.2997

Cite This Page:

Massachusetts General Hospital. "Important new information on genetic risk of sudden cardiac death." ScienceDaily. ScienceDaily, 30 June 2014. <www.sciencedaily.com/releases/2014/06/140630141415.htm>.
Massachusetts General Hospital. (2014, June 30). Important new information on genetic risk of sudden cardiac death. ScienceDaily. Retrieved August 31, 2014 from www.sciencedaily.com/releases/2014/06/140630141415.htm
Massachusetts General Hospital. "Important new information on genetic risk of sudden cardiac death." ScienceDaily. www.sciencedaily.com/releases/2014/06/140630141415.htm (accessed August 31, 2014).

Share This




More Health & Medicine News

Sunday, August 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) — Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) — California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
3 Things To Know About The Ebola Outbreak's Progression

3 Things To Know About The Ebola Outbreak's Progression

Newsy (Aug. 29, 2014) — Here are three things you need to know about the deadly Ebola outbreak's progression this week. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins