Featured Research

from universities, journals, and other organizations

Even geckos can lose their grip

Date:
July 9, 2014
Source:
Linköping Universitet
Summary:
Not even geckos and spiders can sit upside down forever. Nanophysics makes sure of that. Mechanics researchers have demonstrated this in an article that can be of great industrial benefit.

Thin film in contact with an uneven surface.
Credit: Picture by Stefan Lindström and others.

Not even geckos and spiders can sit upside down forever. Nanophysics makes sure of that. Mechanics researchers at Linköping University have demonstrated this in an article just published in Physical Review E. This knowledge can be of great industrial benefit.

Geckos and spiders that seem to be able to sit still forever, and walk around upside down have fascinated researchers worldwide for many years. We will soon be able to buy smart new fasteners that hold the same way as the gecko's foot. But the fact is, sooner or later the grip is lost, no matter how little force is acting on it. Stefan Lindström and Lars Johansson, researchers at the Division of Mechanics, Linköping University, together with Nils Karlsson, recent engineering graduate, have demonstrated this in an article just published in Physical Review E.

Still, it's a phenomenon that can have considerable benefits, for instance in the production of graphene. Graphene consists only of one layer of atom, and which must be easily detached from the substrate.

In his graduation project at the Division of Mechanics, Nils Karlsson studied both the mechanics of the gecko's leg as well as the adhesion of its foot to the substrate. The gecko's foot has five toes, all with transverse lamellae. A scanning electron microscope shows that these lamellae consist of a number of small hair-like setae, each with a little film at the end, which resembles a small spatula. These spatulae, roughly 10 nm thick, are what adheres to the substrate.

"At the nano level, conditions are a bit different. The movement of the molecules is negligible in our macroscopic world, but it's not in the nano world. Nils Karlsson's graduation project suggested that heat, and consequently the movement of the molecules, has an effect on the adhesion of these spatulae. We wanted to do further analyses, and calculate what actually happens," explains Stefan Lindström.

They refined the calculations, so they applied to a thin film in contact with an uneven surface. So, the film only contacts the uppermost parts of the uneven surface. The researchers also chose to limit the calculations to the type of weak forces that exist between all atoms and molecules -- van der Waals forces.

"It's true, they are small, but they are always there and we know that they are extremely reliant on distance," says Lars Johansson.

This means that the force is much stronger where the film is very close to a single high point, than when it is quite close to a number of high points. Then, when the film detaches, it does this point by point. This is because both contact surfaces are moving -- vibrating. These are tiny movements, but at some stage the movements are in sync, so the surfaces actually lose contact. Then the van der Waals force is so small that the film releases.

"So in reality, we can detach a thin film from the substrate simply by waiting for the right moment. This doesn't require a great deal of force. The part of the film that remains on the substrate vibrates constantly, and the harder I pull on this part, the faster the film will detach. But how long it takes for the film to detach also depends on the structure of the substrate and the film's stiffness," says Stefan Lindström.

In practice this means that even a small force over a long period will cause the film, or for that matter the gecko's foot, to lose its grip. Which is fine for the gecko, who can scoot off, but maybe not so good for a fastening system. Still -- in the right application, this knowledge can be of great industrial benefit.


Story Source:

The above story is based on materials provided by Linköping Universitet. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stefan B. Lindström, Lars Johansson, Nils R. Karlsson. Metastable states and activated dynamics in thin-film adhesion to patterned surfaces. Physical Review E, 2014; 89 (6) DOI: 10.1103/PhysRevE.89.062401

Cite This Page:

Linköping Universitet. "Even geckos can lose their grip." ScienceDaily. ScienceDaily, 9 July 2014. <www.sciencedaily.com/releases/2014/07/140709095509.htm>.
Linköping Universitet. (2014, July 9). Even geckos can lose their grip. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2014/07/140709095509.htm
Linköping Universitet. "Even geckos can lose their grip." ScienceDaily. www.sciencedaily.com/releases/2014/07/140709095509.htm (accessed September 2, 2014).

Share This




More Matter & Energy News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Teases India Event, Possible Android One Reveal

Google Teases India Event, Possible Android One Reveal

Newsy (Sep. 1, 2014) — Google has announced a Sept. 15 event in India during which they're expected to reveal their Android One phones. Video provided by Newsy
Powered by NewsLook.com
Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) — Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) — Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins