Featured Research

from universities, journals, and other organizations

Even geckos can lose their grip

Date:
July 9, 2014
Source:
Linköping Universitet
Summary:
Not even geckos and spiders can sit upside down forever. Nanophysics makes sure of that. Mechanics researchers have demonstrated this in an article that can be of great industrial benefit.

Thin film in contact with an uneven surface.
Credit: Picture by Stefan Lindström and others.

Not even geckos and spiders can sit upside down forever. Nanophysics makes sure of that. Mechanics researchers at Linköping University have demonstrated this in an article just published in Physical Review E. This knowledge can be of great industrial benefit.

Related Articles


Geckos and spiders that seem to be able to sit still forever, and walk around upside down have fascinated researchers worldwide for many years. We will soon be able to buy smart new fasteners that hold the same way as the gecko's foot. But the fact is, sooner or later the grip is lost, no matter how little force is acting on it. Stefan Lindström and Lars Johansson, researchers at the Division of Mechanics, Linköping University, together with Nils Karlsson, recent engineering graduate, have demonstrated this in an article just published in Physical Review E.

Still, it's a phenomenon that can have considerable benefits, for instance in the production of graphene. Graphene consists only of one layer of atom, and which must be easily detached from the substrate.

In his graduation project at the Division of Mechanics, Nils Karlsson studied both the mechanics of the gecko's leg as well as the adhesion of its foot to the substrate. The gecko's foot has five toes, all with transverse lamellae. A scanning electron microscope shows that these lamellae consist of a number of small hair-like setae, each with a little film at the end, which resembles a small spatula. These spatulae, roughly 10 nm thick, are what adheres to the substrate.

"At the nano level, conditions are a bit different. The movement of the molecules is negligible in our macroscopic world, but it's not in the nano world. Nils Karlsson's graduation project suggested that heat, and consequently the movement of the molecules, has an effect on the adhesion of these spatulae. We wanted to do further analyses, and calculate what actually happens," explains Stefan Lindström.

They refined the calculations, so they applied to a thin film in contact with an uneven surface. So, the film only contacts the uppermost parts of the uneven surface. The researchers also chose to limit the calculations to the type of weak forces that exist between all atoms and molecules -- van der Waals forces.

"It's true, they are small, but they are always there and we know that they are extremely reliant on distance," says Lars Johansson.

This means that the force is much stronger where the film is very close to a single high point, than when it is quite close to a number of high points. Then, when the film detaches, it does this point by point. This is because both contact surfaces are moving -- vibrating. These are tiny movements, but at some stage the movements are in sync, so the surfaces actually lose contact. Then the van der Waals force is so small that the film releases.

"So in reality, we can detach a thin film from the substrate simply by waiting for the right moment. This doesn't require a great deal of force. The part of the film that remains on the substrate vibrates constantly, and the harder I pull on this part, the faster the film will detach. But how long it takes for the film to detach also depends on the structure of the substrate and the film's stiffness," says Stefan Lindström.

In practice this means that even a small force over a long period will cause the film, or for that matter the gecko's foot, to lose its grip. Which is fine for the gecko, who can scoot off, but maybe not so good for a fastening system. Still -- in the right application, this knowledge can be of great industrial benefit.


Story Source:

The above story is based on materials provided by Linköping Universitet. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stefan B. Lindström, Lars Johansson, Nils R. Karlsson. Metastable states and activated dynamics in thin-film adhesion to patterned surfaces. Physical Review E, 2014; 89 (6) DOI: 10.1103/PhysRevE.89.062401

Cite This Page:

Linköping Universitet. "Even geckos can lose their grip." ScienceDaily. ScienceDaily, 9 July 2014. <www.sciencedaily.com/releases/2014/07/140709095509.htm>.
Linköping Universitet. (2014, July 9). Even geckos can lose their grip. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/07/140709095509.htm
Linköping Universitet. "Even geckos can lose their grip." ScienceDaily. www.sciencedaily.com/releases/2014/07/140709095509.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New A350 Help Airbus Fly?

Will New A350 Help Airbus Fly?

Reuters - Business Video Online (Dec. 22, 2014) — Qatar Airways takes first delivery of Airbus' new A350 passenger jet. As Joel Flynn reports it's the planemaker's response to the Boeing 787 Dreamliner and the culmination of eight years of development. Video provided by Reuters
Powered by NewsLook.com
Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Buzz60 (Dec. 22, 2014) — A BASE jumper rides a lawn chair, a shotgun, and a giant bunch of helium balloons into the sky in what seems like a country version of the movie 'Up." Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins