Featured Research

from universities, journals, and other organizations

Blame it on the astrocytes: does brain's most abundant cell type have role in neurological disorders?

Date:
July 11, 2014
Source:
Publicase Comunicação Científica
Summary:
The demonstration that astrocytes, the brain's most abundant cell type, participate in the formation of inhibitory synapses in the cortex suggests an important role for these cells in some neurological disorders. Astrocytes, named for their star-like shape, are ubiquitous brain cells known for regulating excitatory synapse formation through cells. Recent studies have shown that astrocytes also play a role in forming inhibitory synapses, but the key players and underlying mechanisms have remained unknown until now.

In the brains of all vertebrates, information is transmitted through synapses, a mechanism that allows an electric or chemical signal to be passed from one brain cell to another. Chemical synapses, which are the most abundant type of synapse, can be either excitatory or inhibitory. Synapse formation is crucial for learning, memory, perception and cognition, and the balance between excitatory and inhibitory synapses critical for brain function. For instance, every time we learn something, the new information is transformed into memory through synaptic plasticity, a process in which synapses are strengthened and become more responsive to different stimuli or environmental cues. Synapses may change their shape or function in a matter of seconds or over an entire lifetime. In humans, a number of disorders are associated with dysfunctional synapses, including autism, epilepsy, substance abuse and depression.

Astrocytes, named for their star-like shape, are ubiquitous brain cells known for regulating excitatory synapse formation through cells. Recent studies have shown that astrocytes also play a role in forming inhibitory synapses, but the key players and underlying mechanisms have remained unknown until now.

A new study just published in the journal Glia and available online on July 11th, details the newly discovered mechanism by which astrocytes are involved in inhibitory synapse formation and presents strong evidence that Transforming Growth Factor Beta 1 (TGF β1), a protein produced by many cell types (including astrocytes) is a key player in this process. The team led by Flávia Gomes of the Rio de Janeiro Institute of Biomedical Sciences at the Federal University of Rio de Janeiro investigated the process in both mouse and human tissues, first in test tubes, then in living brain cells.

Previous evidence has shown that TGF β1, a molecule associated with essential functions in nervous system development and repair, modulates other components responsible for normal brain function. In this study, the authors were able to show that TGF β1 triggers N-methyl-D-aspartate receptor (NMDA), a molecule controlling memory formation and maintenance through synaptic plasticity. In the study, the group also shows that TGF β1-induction of inhibitory synapses depends on activation of another molecule -- Ca2+/calmodulin-dependent protein kinase II (CaMK2)-, which works as a mediator for learning and memory. "Our study is the first to associate this complex pathway of molecules, of which TGF β1 seems to be a key player, to astrocytes' ability to modulate inhibitory synapses," says Flávia Gomes.

The idea that the balance between excitatory and inhibitory inputs depends on astrocyte signals gains strong support with this new study and suggests a pivotal role for astrocytes in the development of neurological disorders involving impaired inhibitory synapse transmission. Knowing the players and mechanisms underlying inhibitory synapses may improve our understanding of synaptic plasticity and cognitive processes and may help develop new drugs for treating these diseases.


Story Source:

The above story is based on materials provided by Publicase Comunicação Científica. Note: Materials may be edited for content and length.


Journal Reference:

  1. Flávia Gomes et al. Astrocyte Transforming Growth Factor Beta 1 Promotes Inhibitory Synapse Formation Via Cam Kinase II Signaling. Glia, July 2014 DOI: 10.1002/(ISSN)1098-1136

Cite This Page:

Publicase Comunicação Científica. "Blame it on the astrocytes: does brain's most abundant cell type have role in neurological disorders?." ScienceDaily. ScienceDaily, 11 July 2014. <www.sciencedaily.com/releases/2014/07/140711092142.htm>.
Publicase Comunicação Científica. (2014, July 11). Blame it on the astrocytes: does brain's most abundant cell type have role in neurological disorders?. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2014/07/140711092142.htm
Publicase Comunicação Científica. "Blame it on the astrocytes: does brain's most abundant cell type have role in neurological disorders?." ScienceDaily. www.sciencedaily.com/releases/2014/07/140711092142.htm (accessed July 29, 2014).

Share This




More Mind & Brain News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) — A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com
University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) — An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com
Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) — A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) — The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins