Featured Research

from universities, journals, and other organizations

'Game theory' model reveals vulnerable moments for metastatic cancer cells' energy production

Date:
July 15, 2014
Source:
Johns Hopkins Medicine
Summary:
Cancer’s no game, but researchers are borrowing ideas from evolutionary game theory to learn how cells cooperate within a tumor to gather energy. Their experiments, they say, could identify the ideal time to disrupt metastatic cancer cell cooperation and make a tumor more vulnerable to anti-cancer drugs.

Cooperation between oxygen-poor cancer cells (red) and oxygen-rich ones (green) is illustrated.
Credit: Laboratory of Kenneth Pienta, Johns Hopkins.

Cancer's no game, but researchers at Johns Hopkins are borrowing ideas from evolutionary game theory to learn how cells cooperate within a tumor to gather energy. Their experiments, they say, could identify the ideal time to disrupt metastatic cancer cell cooperation and make a tumor more vulnerable to anti-cancer drugs.

Related Articles


"The reality is that we still can't cure metastatic cancer that has spread from its primary organ and game theory adds to our efforts to attack the problem," says Kenneth J. Pienta, M.D., the Donald S. Coffey Professor of Urology at the Johns Hopkins Brady Urological Institute, and director of the Prostate Cancer Program at the Johns Hopkins Kimmel Cancer Center. A description of the work appears in a June 20 report in the journal Interface Focus.

Game theory is a mathematical study of strategic decision-making, and has been widely used to predict conflict and cooperation between individuals and even nations, but increasingly is applied to forecasting cell-to-cell interactions in biology with an ecological perspective. Tumors contain a variety of cells shifting between cooperative-like to competitive-like states, said Ardeshir Kianercy, Ph.D., a postdoctoral researcher in Pienta's lab. "To study tumor cells in isolation is not enough," he noted. "It makes sense to study their behavior and relationship with other cells and how they co-evolve together."

In their research, the Johns Hopkins scientists used mathematical and computer tools to set up game parameters based on biological interactions between two types of tumor cells, one oxygen-rich and the other oxygen-poor. Cells within a tumor engage in different types of energy metabolism depending on how close they are to an oxygen-rich blood supply. Tumor cells in oxygen-poor areas use the sugar glucose to produce energy and, as part of the process, release a compound called lactate. Oxygen-rich cells use this lactate in a different type of energy metabolism process and, as a result, release glucose that can be used by oxygen-poor cells to burn for their own energy.

Generally, the process is an efficient partnership that can help a tumor thrive, but the partnership is always changing as the tumor cells mutate. The mutation rate influences the strength of the energy partnerships between the oxygen-rich and oxygen-poor cells and levels of glucose and lactate production and uptake, according to the scientists.

Applying game theory calculations that accounted for the tumor cells' mutation rates and potential glucose and lactate levels, the scientists found that within certain ranges of mutation rates, "there are critical transitions when a tumor suddenly switches between different types of energy metabolic strategies," Kianercy said. This switch in the playbook of energy production tactics may happen when tumors progress and spread.

The scientists think tumors might be especially vulnerable within this window of strategy-switching, making it a potentially ideal time for clinicians to disrupt the tumor's environment and wreck the partnership among its cells.

Some tumor cells, for instance, may provoke the normal cells around them to release lactate for fuel. A therapy that disrupts lactate transport to the tumor cells during a critical transition "could push a tumor to a condition where cells are not cooperating with each other," Kianercy explained. "And if they become non-cooperative, they are most likely to stay in that state and the tumor may become more vulnerable to anti-cancer therapies."

Pienta said it isn't clear yet whether this type of metabolic cooperation occurs in all tumors. But the game theory model used in the study gives scientists a new way to understand how cancers may progress. "We ultimately want to test how we can interrupt this process with therapies for cancer patients," he said.

Robert Veltri, Ph.D., of the Brady Urological Institute was also involved in the study, which was supported by the National Institutes of Health's National Cancer Institute (U54CA143803).


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Kianercy, R. Veltri, K. J. Pienta. Critical transitions in a game theoretic model of tumour metabolism. Interface Focus, 2014; 4 (4): 20140014 DOI: 10.1098/%u200Brsfs.2014.0014

Cite This Page:

Johns Hopkins Medicine. "'Game theory' model reveals vulnerable moments for metastatic cancer cells' energy production." ScienceDaily. ScienceDaily, 15 July 2014. <www.sciencedaily.com/releases/2014/07/140715141750.htm>.
Johns Hopkins Medicine. (2014, July 15). 'Game theory' model reveals vulnerable moments for metastatic cancer cells' energy production. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/07/140715141750.htm
Johns Hopkins Medicine. "'Game theory' model reveals vulnerable moments for metastatic cancer cells' energy production." ScienceDaily. www.sciencedaily.com/releases/2014/07/140715141750.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins