Featured Research

from universities, journals, and other organizations

'Game theory' model reveals vulnerable moments for metastatic cancer cells' energy production

Date:
July 15, 2014
Source:
Johns Hopkins Medicine
Summary:
Cancer’s no game, but researchers are borrowing ideas from evolutionary game theory to learn how cells cooperate within a tumor to gather energy. Their experiments, they say, could identify the ideal time to disrupt metastatic cancer cell cooperation and make a tumor more vulnerable to anti-cancer drugs.

Cooperation between oxygen-poor cancer cells (red) and oxygen-rich ones (green) is illustrated.
Credit: Laboratory of Kenneth Pienta, Johns Hopkins.

Cancer's no game, but researchers at Johns Hopkins are borrowing ideas from evolutionary game theory to learn how cells cooperate within a tumor to gather energy. Their experiments, they say, could identify the ideal time to disrupt metastatic cancer cell cooperation and make a tumor more vulnerable to anti-cancer drugs.

"The reality is that we still can't cure metastatic cancer that has spread from its primary organ and game theory adds to our efforts to attack the problem," says Kenneth J. Pienta, M.D., the Donald S. Coffey Professor of Urology at the Johns Hopkins Brady Urological Institute, and director of the Prostate Cancer Program at the Johns Hopkins Kimmel Cancer Center. A description of the work appears in a June 20 report in the journal Interface Focus.

Game theory is a mathematical study of strategic decision-making, and has been widely used to predict conflict and cooperation between individuals and even nations, but increasingly is applied to forecasting cell-to-cell interactions in biology with an ecological perspective. Tumors contain a variety of cells shifting between cooperative-like to competitive-like states, said Ardeshir Kianercy, Ph.D., a postdoctoral researcher in Pienta's lab. "To study tumor cells in isolation is not enough," he noted. "It makes sense to study their behavior and relationship with other cells and how they co-evolve together."

In their research, the Johns Hopkins scientists used mathematical and computer tools to set up game parameters based on biological interactions between two types of tumor cells, one oxygen-rich and the other oxygen-poor. Cells within a tumor engage in different types of energy metabolism depending on how close they are to an oxygen-rich blood supply. Tumor cells in oxygen-poor areas use the sugar glucose to produce energy and, as part of the process, release a compound called lactate. Oxygen-rich cells use this lactate in a different type of energy metabolism process and, as a result, release glucose that can be used by oxygen-poor cells to burn for their own energy.

Generally, the process is an efficient partnership that can help a tumor thrive, but the partnership is always changing as the tumor cells mutate. The mutation rate influences the strength of the energy partnerships between the oxygen-rich and oxygen-poor cells and levels of glucose and lactate production and uptake, according to the scientists.

Applying game theory calculations that accounted for the tumor cells' mutation rates and potential glucose and lactate levels, the scientists found that within certain ranges of mutation rates, "there are critical transitions when a tumor suddenly switches between different types of energy metabolic strategies," Kianercy said. This switch in the playbook of energy production tactics may happen when tumors progress and spread.

The scientists think tumors might be especially vulnerable within this window of strategy-switching, making it a potentially ideal time for clinicians to disrupt the tumor's environment and wreck the partnership among its cells.

Some tumor cells, for instance, may provoke the normal cells around them to release lactate for fuel. A therapy that disrupts lactate transport to the tumor cells during a critical transition "could push a tumor to a condition where cells are not cooperating with each other," Kianercy explained. "And if they become non-cooperative, they are most likely to stay in that state and the tumor may become more vulnerable to anti-cancer therapies."

Pienta said it isn't clear yet whether this type of metabolic cooperation occurs in all tumors. But the game theory model used in the study gives scientists a new way to understand how cancers may progress. "We ultimately want to test how we can interrupt this process with therapies for cancer patients," he said.

Robert Veltri, Ph.D., of the Brady Urological Institute was also involved in the study, which was supported by the National Institutes of Health's National Cancer Institute (U54CA143803).


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Kianercy, R. Veltri, K. J. Pienta. Critical transitions in a game theoretic model of tumour metabolism. Interface Focus, 2014; 4 (4): 20140014 DOI: 10.1098/%u200Brsfs.2014.0014

Cite This Page:

Johns Hopkins Medicine. "'Game theory' model reveals vulnerable moments for metastatic cancer cells' energy production." ScienceDaily. ScienceDaily, 15 July 2014. <www.sciencedaily.com/releases/2014/07/140715141750.htm>.
Johns Hopkins Medicine. (2014, July 15). 'Game theory' model reveals vulnerable moments for metastatic cancer cells' energy production. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2014/07/140715141750.htm
Johns Hopkins Medicine. "'Game theory' model reveals vulnerable moments for metastatic cancer cells' energy production." ScienceDaily. www.sciencedaily.com/releases/2014/07/140715141750.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins