Featured Research

from universities, journals, and other organizations

New assay to spot fake malaria drugs could save thousands of lives

Date:
July 15, 2014
Source:
Oregon State University
Summary:
Chemists have created a new type of chemical test, or assay, that's inexpensive, simple, and can tell whether or not one of the primary drugs being used to treat malaria is genuine -- an enormous and deadly problem in the developing world. If widely used it could help save hundreds of thousands of lives.

Paper assay: This approach is used to prepare a paper assay that can tell whether a common drug used to treat malaria is genuine.
Credit: (Graphic courtesy of Oregon State University)

Chemists and students in science and engineering at Oregon State University have created a new type of chemical test, or assay, that's inexpensive, simple, and can tell whether or not one of the primary drugs being used to treat malaria is genuine -- an enormous and deadly problem in the developing world.

The World Health Organization has estimated that about 200,000 lives a year may be lost due to the use of counterfeit anti-malarial drugs. When commercialized, the new OSU technology may be able to help address that problem by testing drugs for efficacy at a cost of a few cents.

When broadly implemented, this might save thousands of lives every year around the world, and similar technology could also be developed for other types of medications and diseases, experts say.

Findings on the new technology were just published in Talanta, a professional journal.

"There are laboratory methods to analyze medications such as this, but they often are not available or widely used in the developing world where malaria kills thousands of people every year," said Vincent Remcho, a professor of chemistry and Patricia Valian Reser Faculty Scholar in the OSU College of Science, a position which helped support this work.

"What we need are inexpensive, accurate assays that can detect adulterated pharmaceuticals in the field, simple enough that anyone can use them," Remcho said. "Our technology should provide that."

The system created at OSU looks about as simple, and is almost as cheap, as a sheet of paper. But it's actually a highly sophisticated "colorimetric" assay that consumers could use to tell whether or not they are getting the medication they paid for -- artesunate -- which is by far the most important drug used to treat serious cases of malaria. The assay also verifies that an adequate level of the drug is present.

In some places in the developing world, more than 80 percent of outlets are selling counterfeit pharmaceuticals, researchers have found. One survey found that 38-53 percent of outlets in Cambodia, Laos, Myanmar, Thailand and Vietnam had no active drug in the product that was being sold. Artesunate, which can cost $1 to $2 per adult treatment, is considered an expensive drug by the standards of the developing world, making counterfeit drugs profitable since the disease is so prevalent.

Besides allowing thousands of needless deaths, the spread of counterfeit drugs with sub-therapeutic levels of artesunate can promote the development of new strains of multi-drug resistant malaria, with global impacts. Government officials could also use the new system as a rapid screening tool to help combat the larger problem of drug counterfeiting.

The new technology is an application of microfluidics, in this instance paper microfluidics, in which a film is impressed onto paper that can then detect the presence and level of the artesunate drug. A single pill can be crushed, dissolved in water, and when a drop of the solution is placed on the paper, it turns yellow if the drug is present. The intensity of the color indicates the level of the drug, which can be compared to a simple color chart.

OSU undergraduate and graduate students in chemistry and computer science working on this project in the Remcho lab took the system a step further, and created an app for an iPhone that could be used to measure the color, and tell with an even higher degree of accuracy both the presence and level of the drug.

The technology is similar to what can be accomplished with computers and expensive laboratory equipment, but is much simpler and less expensive. As a result, use of this approach may significantly expand in medicine, scientists said.

"This is conceptually similar to what we do with integrated circuit chips in computers, but we're pushing fluids around instead of electrons, to reveal chemical information that's useful to us," Remcho said. "Chemical communication is how Mother Nature does it, and the long term applications of this approach really are mind-blowing."

Colorimetric assays have already been developed for measurement of many biomarker targets of interest, Remcho said, and could be expanded for a wide range of other medical conditions, pharmaceutical and diagnostic tests, pathogen detection, environmental analysis and other uses.

With a proof of concept of the new technology complete, the researchers may work with the OSU Advantage to commercialize the technology, ultimately with global application. As an incubator for startup and early stage organizations, OSU Advantage connects business with faculty expertise and student talent to bring technology such as this to market.


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Myra T. Koesdjojo, Yuanyuan Wu, Anukul Boonloed, Elizabeth M. Dunfield, Vincent T. Remcho. Low-cost, high-speed identification of counterfeit antimalarial drugs on paper. Talanta, 2014; 130: 122 DOI: 10.1016/j.talanta.2014.05.050

Cite This Page:

Oregon State University. "New assay to spot fake malaria drugs could save thousands of lives." ScienceDaily. ScienceDaily, 15 July 2014. <www.sciencedaily.com/releases/2014/07/140715154533.htm>.
Oregon State University. (2014, July 15). New assay to spot fake malaria drugs could save thousands of lives. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2014/07/140715154533.htm
Oregon State University. "New assay to spot fake malaria drugs could save thousands of lives." ScienceDaily. www.sciencedaily.com/releases/2014/07/140715154533.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins