Featured Research

from universities, journals, and other organizations

Immune cell's role in intestinal movement may lead to better understanding of irritable bowel syndrome

Date:
July 18, 2014
Source:
Penn State
Summary:
Learning the role of immune-system cells in healthy digestive tracts and how they interact with neighboring nerve cells may lead to new treatments for irritable bowel syndrome, researchers say. The muscular lining of the intestine contains a distinct kind of macrophage, an immune system cell that helps fight infections. The role of these cells in normal colon function is not known, although they have been linked to inflammation after abdominal surgery.

Learning the role of immune-system cells in healthy digestive tracts and how they interact with neighboring nerve cells may lead to new treatments for irritable bowel syndrome (IBS). Researchers from Penn State College of Medicine, in collaboration with other scientists, have reported the role of macrophages in regulating the contractions of the colon to push digested material through the digestive tract.

Related Articles


The muscular lining of the intestine contains a distinct kind of macrophage, an immune system cell that helps fight infections. The role of these cells in normal colon function is not known, although they have been linked to inflammation after abdominal surgery.

"Very little is known about the function of muscularis macrophages, mainly because these cells are difficult to isolate from intestinal tissue," said Milena Bogunovic, assistant professor of microbiology and immunology.

Digested material is moved through the intestines by the contraction and relaxation of intestinal muscles. The pattern and frequency of these contractions are controlled by the signals from the intestinal nervous system. In patients with diseases like IBS, the signals are overactive and stimulation is exaggerated.

The researchers developed a method to deplete muscularis macrophages in the intestines of mice to determine their function. They report their findings in the journal Cell.

"After macrophage depletion, we observed that the normal intestinal movements are irregular, probably because the muscular contractions were poorly coordinated, suggesting that intestinal movements are regulated by macrophages," Bogunovic said.

After confirming the role of the macrophages in the function of the digestive tract, the researchers looked for how the regulation happens. They compared the genetic code of different types of macrophages to find non-immune genes highly active in muscularis macrophages, identifying bone morphogenetic protein 2. BMP2 is one of a family of proteins thought to control organ development.

Blocking the effect of BMP2 mirrored the effects of the macrophage removal, confirming that the protein is used for regulation of intestinal movements. The BMP2 is used by neighboring nerve cells, intestinal neurons, which in turn secrete a protein called colony stimulatory factor 1 (CSF1) that supports macrophages.

"Two completely different cell types help each other to carry one key function, to regulate the physiology of the gut," Bogunovic said.

The interactions between the two cells types are orchestrated by the "good" bacteria in the intestine that aids in healthy digestion.

By giving mice antibiotics to kill off the bacteria, the communication between macrophages and neurons is interrupted resulting in decreased BMP2 and CSF1 production and disrupted intestinal contractions.

By restoring the "good" bacteria in the mice, the miscommunication between macrophages and neurons is reversed, showing that the dialogue between the macrophages and nervous system is adaptable to the changes in the bacterial environment.

A potential cause of IBS is a change in the bacterial environment in the intestine.

"By better understanding how the nervous system cells, the muscularis macrophages and signals from inside the intestine interact, we may be able to find new treatments for IBS, or even prevent it," Bogunovic said.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Journal Reference:

  1. Paul Andrew Muller, Balázs Koscsó, Gaurav Manohar Rajani, Korey Stevanovic, Marie-Luise Berres, Daigo Hashimoto, Arthur Mortha, Marylene Leboeuf, Xiu-Min Li, Daniel Mucida, E. Richard Stanley, Stephanie Dahan, Kara Gross Margolis, Michael David Gershon, Miriam Merad, Milena Bogunovic. Crosstalk between Muscularis Macrophages and Enteric Neurons Regulates Gastrointestinal Motility. Cell, 2014; 158 (2): 300 DOI: 10.1016/j.cell.2014.04.050

Cite This Page:

Penn State. "Immune cell's role in intestinal movement may lead to better understanding of irritable bowel syndrome." ScienceDaily. ScienceDaily, 18 July 2014. <www.sciencedaily.com/releases/2014/07/140718131506.htm>.
Penn State. (2014, July 18). Immune cell's role in intestinal movement may lead to better understanding of irritable bowel syndrome. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2014/07/140718131506.htm
Penn State. "Immune cell's role in intestinal movement may lead to better understanding of irritable bowel syndrome." ScienceDaily. www.sciencedaily.com/releases/2014/07/140718131506.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins