Featured Research

from universities, journals, and other organizations

Potential new flu drugs target immune response, not virus

Date:
July 21, 2014
Source:
American Society for Microbiology
Summary:
The seriousness of disease often results from the strength of immune response, rather than with the virus, itself. Turning down that response, rather than attacking the virus, might be a better way to reduce that severity, says a researcher. The research team has now taken the first step in doing just that for the H7N9 influenza, and their work has already led to identification of six potential therapeutics.

The seriousness of disease often results from the strength of immune response, rather than with the virus, itself. Turning down that response, rather than attacking the virus, might be a better way to reduce that severity, says Juliet Morrison of the University of Washington, Seattle. She and her collaborators have now taken the first step in doing just that for the H7N9 influenza, and their work has already led to identification of six potential therapeutics for this highly virulent strain. The research is published ahead of print in the Journal of Virology.

Related Articles


"We set out to characterize the response to the severe disease-causing H7N9 virus and compare it to responses elicited by other serious flu viruses in a mouse model of infection," says Morrison. That work involved determining which genes are turned on by this infection.

"We have found that viruses that cause severe illness, like H7N9 and the infamous 1918 virus, trigger gene expression signatures that are different from the signatures seen in milder infections," says coauthor and University of Washington colleague Michael Katze, in whose laboratory the work was performed. "Importantly, we can exploit these signatures for antiviral drug discovery," he adds.

The investigators then used a computational approach to identify potentially therapeutic drugs. They searched databases containing gene expression profiles of cultured human cells that had been treated with different drugs, in order to find those that were the reverse of expression profiles induced by the H7N9 flu virus, and noting the drugs that accomplished this, says Morrison. These drugs could potentially dampen the harmful host response, she says.

"Six of these drugs are FDA approved and could potentially be repurposed as H7N9 influenza therapeutics," says Morrison. "I believe that computational biology represents an exciting new way to study viruses and to discover drugs to fight them," says Morrison. And that, she says, is what drew her to join Katze's laboratory.

The H7N9 avian influenza, which emerged in February, 2013, has caused those infected to become extremely ill, reminiscent of the 1918 influenza pandemic, the deadliest on record. The data suggests that such severe influenzas are associated with increased transcription of inflammatory cytokine genes, and reduced transcription of lipid metabolism and coagulation genes, according to the paper. Further study of these phenomena will lead to a better understanding of severe influenza, and could help investigators to identify potential therapeutics aimed at turning down the response.


Story Source:

The above story is based on materials provided by American Society for Microbiology. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Morrison, L. Josset, N. Tchitchek, J. Chang, J. A. Belser, D. E. Swayne, M. J. Pantin-Jackwood, T. M. Tumpey, M. G. Katze. H7N9 and other pathogenic avian influenza viruses elicit a three-pronged transcriptomic signature that is reminiscent of 1918 influenza and associated with lethal outcome in mice. Journal of Virology, 2014; DOI: 10.1128/JVI.00570-14

Cite This Page:

American Society for Microbiology. "Potential new flu drugs target immune response, not virus." ScienceDaily. ScienceDaily, 21 July 2014. <www.sciencedaily.com/releases/2014/07/140721124024.htm>.
American Society for Microbiology. (2014, July 21). Potential new flu drugs target immune response, not virus. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/2014/07/140721124024.htm
American Society for Microbiology. "Potential new flu drugs target immune response, not virus." ScienceDaily. www.sciencedaily.com/releases/2014/07/140721124024.htm (accessed April 1, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) — Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com
Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) — The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins