Featured Research

from universities, journals, and other organizations

Study links enzyme to autistic behaviors

Date:
July 23, 2014
Source:
University of California - Riverside
Summary:
Biomedical scientists have shed light on the cause of autistic behaviors in Fragile X syndrome (FXS), the most common cause of autism. They found that an enzyme, MMP-9, plays a critical role. Working on mice, the researchers targeted MMP-9 as a potential therapeutic target in FXS and showed that genetic deletion of MMP-9 favorably impacts key aspects of FXS-associated anatomical and behaviors.

Iryna Ethell is a professor of biomedical sciences in the UC Riverside School of Medicine.
Credit: L. Duka

Fragile X syndrome (FXS) is a genetic disorder that causes obsessive-compulsive and repetitive behaviors, and other behaviors on the autistic spectrum, as well as cognitive deficits. It is the most common inherited cause of mental impairment and the most common cause of autism.

Related Articles


Now biomedical scientists at the University of California, Riverside have published a study that sheds light on the cause of autistic behaviors in FXS. Appearing online today (July 23) in the Journal of Neuroscience, and highlighted also on the cover in this week's print issue of the journal, the study describes how MMP-9, an enzyme, plays a critical role in the development of autistic behaviors and synapse irregularities, with potential implications for other autistic spectrum disorders.

MMP-9 is produced by brain cells. Inactive, it is secreted into the spaces between cells of the brain, where it awaits activation. Normal brains have quite a bit of inactive MMP-9, and the activation of small amounts has significant effects on the connections between neurons, called synapses. Too much MMP-9 activity causes synapses in the brain to become unstable, leading to functional deficits.

"Our study targets MMP-9 as a potential therapeutic target in Fragile X and shows that genetic deletion of MMP-9 favorably impacts key aspects of FXS-associated anatomical alterations and behaviors in a mouse model of Fragile X," said Iryna Ethell, a professor of biomedical sciences in the UC Riverside School of Medicine, who co-led the study. "We found that too much MMP-9 activity causes synapses to become unstable, which leads to functional deficits that depend on where in the brain that occurs."

Ethell explained that mutations in FMR1, a gene, have been known for more than a decade to cause FXS, but until now it has been unclear how these mutations cause unstable synapses and characteristic physical features of this disorder. The new findings expand on earlier work by the research group that showed that an MMP-9 inhibitor, minocycline, can reduce behavioral aspects of FXS, which then led to its use to treat FXS.

To further establish a causative role for MMP-9 in the development of FXS-associated features, including autistic behaviors, the authors generated mice that were missing both FMR1 and MMP-9. They found that while mice with a single FMR1 mutation showed autistic behaviors and macroorchidism (abnormally large testes), mice that also lacked MMP-9 showed no autistic behaviors.

"Our work points directly to MMP-9 over-activation as a cause for synaptic irregularities in FXS, with potential implications for other autistic spectrum disorders and perhaps Alzheimer's disease," said Doug Ethell, the head of Molecular Neurobiology at the Western University of Health Sciences, Pomona, Calif., and a coauthor on the study.

The research paper represents many years of bench work and effort by a dedicated team led by the Ethells. The work was primarily done in mice, but human tissue samples were also analyzed, with findings found to be consistent. Specifically, the work involved assessing behaviors, biochemistry, activity and anatomy of synaptic connections in the brain of a mouse model of FXS, as well as the creation of a new mouse line that lacked both the FXS gene and MMP-9.

FXS affects both males and females, with females often having milder symptoms than males. It is estimated that about 1 in 5,000 males are born with the disorder.

The Ethells were joined in the study by UCR's Harpreet Sidhu (first author of the research paper), Lorraine E. Dansie, and Peter Hickmott. Sidhu and Dansie are neuroscience graduate students; Hickmott is an associate professor of psychology.

Next, the researchers plan to understand how MMP-9 regulates synapse stability inside the neurons. They also plan to find drugs that specifically target MMP-9 without side effects such as new tetracycline derivatives that are potent inhibitors of MMP-9 but lack antibiotic properties.

"Although minocycline was successfully used in clinical trial in FXS, it has some side effects associated with its antibiotic properties, such gastrointestinal irritation," Iryna Ethell said. "We, therefore, plan to test new non-antibiotic minocycline derivatives. These compounds lack antibiotic activity but still act as non-competitive inhibitors of MMP-9 similar to minocycline."

The research was funded by grants from the FRAXA Research Foundation, the National Institutes of Health and the California Institute for Regenerative Medicine.


Story Source:

The above story is based on materials provided by University of California - Riverside. The original article was written by Iqbal Pittalwala. Note: Materials may be edited for content and length.


Journal Reference:

  1. H. Sidhu, L. E. Dansie, P. W. Hickmott, D. W. Ethell, I. M. Ethell. Genetic Removal of Matrix Metalloproteinase 9 Rescues the Symptoms of Fragile X Syndrome in a Mouse Model. Journal of Neuroscience, 2014; 34 (30): 9867 DOI: 10.1523/JNEUROSCI.1162-14.2014

Cite This Page:

University of California - Riverside. "Study links enzyme to autistic behaviors." ScienceDaily. ScienceDaily, 23 July 2014. <www.sciencedaily.com/releases/2014/07/140723141830.htm>.
University of California - Riverside. (2014, July 23). Study links enzyme to autistic behaviors. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2014/07/140723141830.htm
University of California - Riverside. "Study links enzyme to autistic behaviors." ScienceDaily. www.sciencedaily.com/releases/2014/07/140723141830.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins