Featured Research

from universities, journals, and other organizations

3-D printing finds its 'sweet spot' through 'nifty shades of gray'

Date:
August 4, 2014
Source:
University of Sheffield
Summary:
A 'less is more' approach has enabled engineers to make 3-D printed parts lighter and stronger, using methods that will also make 3-D printing faster and more economical.

A 'less is more' approach has enabled UK engineers to make 3D printed parts lighter and stronger, using methods that will also make 3D printing faster and more economical.

Related Articles


The technique uses a cutting edge process known as high speed sintering (HSS). Unlike commercial 3D printers that use lasers, HSS marks the shape of the part onto powdered plastic using heat-sensitive ink, which is then activated by an infra-red lamp to melt the powder layer by layer and so build up the 3D part.

Researchers from the University of Sheffield have discovered they can control the density and strength of the final product by printing the ink at different shades of grey and that the best results are achieved by using less ink than is standard.

"All HSS work to date has involved printing 100 per cent black, but this doesn't get the best results," explains Professor of Manufacturing Engineering Neil Hopkinson, from the University of Sheffield. "We found that there is a point at which, as the ink levels increase, the mechanical properties start to reduce. This enabled us to identify the 'sweet spot' at which you can gain maximum strength with the minimum amount of ink."

The researchers are able to manipulate the density of the material by up to 40 per cent, opening the door to the possibility of 3D printing parts with differing densities at different points. This would enable parts to have greatly reduced weight but equivalent mechanical strength -- for example by having a dense outer shell and a lighter inner structure.

"3D printing has focused on optimising the shape of a part in order to reduce its weight and still retain its mechanical properties," says Professor Hopkinson, who will announce the findings today (5 August 2014) at the Solid Freeform Fabrication Symposium in Austin, Texas. "Printing in greyscale will enable us to optimise the material instead, in a process that would be feasible for commercial manufacture. And by making parts with different densities out of one material, we can also make recycling more straightforward."

The ability to maximise strength while reducing weight means the technique would have obvious applications in the aerospace and automotive industries. But there are other sectors where it could bring benefits -- one application envisaged by Professor Hopkinson is in sports footwear, where soles are currently made from dual density foams and could be printed in one material using the new technique.

Although still in development, HSS already holds great promise for industrial use as the process can be scaled to work at comparable speeds to conventional high volume processes, such as injection moulding. The new findings will further reduce the costs of manufacturing using HSS, by reducing the volume of ink energy required to make a product.

Video: https://www.youtube.com/watch?v=5VHBNHHstNY


Story Source:

The above story is based on materials provided by University of Sheffield. Note: Materials may be edited for content and length.


Cite This Page:

University of Sheffield. "3-D printing finds its 'sweet spot' through 'nifty shades of gray'." ScienceDaily. ScienceDaily, 4 August 2014. <www.sciencedaily.com/releases/2014/08/140804202132.htm>.
University of Sheffield. (2014, August 4). 3-D printing finds its 'sweet spot' through 'nifty shades of gray'. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2014/08/140804202132.htm
University of Sheffield. "3-D printing finds its 'sweet spot' through 'nifty shades of gray'." ScienceDaily. www.sciencedaily.com/releases/2014/08/140804202132.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins