Featured Research

from universities, journals, and other organizations

Water's reaction with metal oxides opens doors for researchers

Date:
August 8, 2014
Source:
University of Wisconsin-Madison
Summary:
A long-unanswered question about how two of the world’s most common substances interact has been answered by researchers. In a new paper, chemical and biological engineers report fundamental discoveries about how water reacts with metal oxides.

A multi-institutional team has resolved a long-unanswered question about how two of the world’s most common substances interact.

Related Articles


In a paper published recently in the journal Nature Communications, Manos Mavrikakis, professor of chemical and biological engineering at the University of Wisconsin-Madison, and his collaborators report fundamental discoveries about how water reacts with metal oxides. The paper opens doors for greater understanding and control of chemical reactions in fields ranging from catalysis to geochemistry and atmospheric chemistry.

“These metal oxide materials are everywhere, and water is everywhere,” Mavrikakis says. “It would be nice to see how something so abundant as water interacts with materials that are accelerating chemical reactions.”

These reactions play a huge role in the catalysis-driven creation of common chemical platforms such as methanol, which is produced on the order of 10 million tons per year as raw material for chemicals production and for uses like fuel. “Ninety percent of all catalytic processes use metal oxides as a support,” Mavrikakis says. “Therefore, all of the reactions including water as an impurity or reactant or product would be affected by the insights developed.”

Chemists understand how water interacts with many non-oxide metals, which are very homogeneous. Metal oxides are trickier: an occasional oxygen atom is missing, causing what Mavrikakis calls “oxygen defects.” When water meets with one of those defects, it forms two adjacent hydroxyls — a stable compound comprised of one oxygen atom and one hydrogen atom.

Mavrikakis, assistant scientist Guowen Peng and Ph.D. student Carrie Farberow, along with researchers at Aarhus University in Denmark and Lund University in Sweden, investigated how hydroxyls affect water molecules around them, and how that differs from water molecules contacting a pristine metal oxide surface.

The Aarhus researchers generated data on the reactions using scanning tunneling microscopy (STM). The Wisconsin researchers then subjected the STM images to quantum mechanical analysis that decoded the resulting chemical structures, defining which atom is which. “If you don’t have the component of the work that we provided, there is no way that you can tell from STM alone what the atomic-scale structure of the water is when absorbed on various surfaces” Mavrikakis says.

The project yielded two dramatically different pictures of water-metal oxide reactions.

“On a smooth surface, you form amorphous networks of water molecules, whereas on a hydroxylated surface, there are much more structured, well-ordered domains of water molecules,” Mavrikakis says.

In the latter case, the researchers realized that hydroxyl behaves as a sort of anchor, setting the template for a tidy hexameric ring of water molecules attracted to the metal’s surface.

Mavrikakis’ next step is to examine how these differing structures react with other molecules, and to use the research to improve catalysis. He sees many possibilities outside his own field.

“Maybe others might be inspired and look at the geochemistry or atmospheric chemistry implications, such as how these water cluster structures on atmospheric dust nanoparticles could affect cloud formation, rain and acid rain,” Mavrikakis says.

Other researchers might also look at whether other molecules exhibit similar behavior when they come into contact with metal oxides, he adds.

“It opens the doors to using hydrogen bonds to make surfaces hydrophilic, or attracted to water, and to (template) these surfaces for the selective absorption of other molecules possessing fundamental similarities to water,” Mavrikakis says. “Because catalysis is at the heart of engineering chemical reactions, this is also very fundamental for atomic-scale chemical reaction engineering.”

While the research fills part of the foundation of chemistry, it also owes a great deal to state-of-the-art research technology.

“The size and nature of the calculations we had to do probably were not feasible until maybe four or five years ago, and the spatial and temporal resolution of scanning tunneling microscopy was not there,” Mavrikakis says. “So it’s advances in the methods that allow for this new information to be born.”


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. The original article was written by Scott Gordon. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lindsay R. Merte, Ralf Bechstein, Guowen Peng, Felix Rieboldt, Carrie A. Farberow, Helene Zeuthen, Jan Knudsen, Erik Lζgsgaard, Stefan Wendt, Manos Mavrikakis, Flemming Besenbacher. Water clustering on nanostructured iron oxide films. Nature Communications, 2014; 5 DOI: 10.1038/ncomms5193

Cite This Page:

University of Wisconsin-Madison. "Water's reaction with metal oxides opens doors for researchers." ScienceDaily. ScienceDaily, 8 August 2014. <www.sciencedaily.com/releases/2014/08/140808163344.htm>.
University of Wisconsin-Madison. (2014, August 8). Water's reaction with metal oxides opens doors for researchers. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2014/08/140808163344.htm
University of Wisconsin-Madison. "Water's reaction with metal oxides opens doors for researchers." ScienceDaily. www.sciencedaily.com/releases/2014/08/140808163344.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) — A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) — The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins