Featured Research

from universities, journals, and other organizations

Foam favorable for oil extraction: Experiments visualize methods for enhanced recovery from wells

Date:
August 12, 2014
Source:
Rice University
Summary:
Researchers demonstrate that foam may be a superior fluid to displace and extract tough-to-reach oil. In tests, foam pumped into an experimental rig that mimicked the flow paths deep underground proved better at removing oil from formations with low permeability than common techniques involving water, gas, surfactants or combinations of the three.

Foam sent through a microfluidic model created at Rice University shows its ability to remove oil (pink) from low-permeability formations. Rice scientists conducted experiments to see how foam would compare with water, gas or combinations of the two for use in enhanced oil recovery.
Credit: Biswal Lab/Rice University

A Rice University laboratory has provided proof that foam may be the right stuff to maximize enhanced oil recovery (EOR).

Related Articles


In tests, foam pumped into an experimental rig that mimicked the flow paths deep underground proved better at removing oil from formations with low permeability than common techniques involving water, gas, surfactants or combinations of the three.

The open-access paper led by Rice scientists Sibani Lisa Biswal and George Hirasaki was published online today by the Royal Society of Chemistry journal Lab on a Chip.

Oil rarely sits in a pool underground waiting to be pumped out to energy-hungry surface dwellers. Often, it lives in formations of rock and sand and hides in small cracks and crevices that have proved devilishly difficult to tap. Drillers pump various substances downhole to loosen and either push or carry oil to the surface.

Biswal's lab has learned a great deal about how foam forms. Now, with an eye toward EOR, she and her colleagues created microfluidic models of formations -- they look something like children's ant farms -- to see how well foam stacks up against other materials in removing as much oil as possible.

The formations are not much bigger than a postage stamp and include wide channels, large cracks and small cracks. By pushing various fluids, including foam, into test formations, the researchers can visualize the ways by which foam is able to remove oil from hard-to-reach places. They can also measure the fluid's pressure gradient to see how it changes as it navigates the landscape.

The team determined the numbers are strongly in foam's favor. Foam dislodged all but 25.1 percent of oil from low-permeability regions after four minutes of pushing it through a test rig, versus 53 percent for water and gas and 98.3 percent for water flooding; this demonstrated efficient use of injected fluid with foam to recover oil.

The less-viscous fluids appear to displace oil in high-permeability regions while blowing right by the smaller cracks that retain their treasure. But foam offers mobility control, which means a higher resistance to flow near large pores.

"The foam's lamellae (the borders between individual bubbles) add extra resistance to the flow," said Biswal, an associate professor of chemical and biomolecular engineering. "Water and gas don't have that ability, so it's easy for them to find paths of least resistance and move straight through. Because foam acts like a more viscous fluid, it's better able to plug high-permeable regions and penetrate into less-permeable regions."

Charles Conn, a Rice graduate student and lead author of the paper, said foam tends to dry out as it progresses through the model. "The bubbles don't actually break. It's more that the liquid drains away and leaves them behind," he said.

Drying has two effects: It slows the progress of the foam even further and allows surfactant from the lamellae to drain into low-permeability zones, where it forces oil out. Foam may also cut the sheer amount of material that may have to be sent downhole.

One of the challenges will always be to get the foam to the underground formation intact. "It's nice to know that foam can do these things, but if you can't generate foam in the reservoir, then it's not going to be useful," Conn said. "If you lose the foam, it collapses into slugs of gas and liquid. You really want foam that can regenerate as it moves through the pores."

The lab plans to test foam on core samples that more closely mimic the environment underground, Biswal said.

Kun Ma, a Rice alumnus, co-authored the paper. The Department of Energy, the Abu Dhabi National Oil Co., the Abu Dhabi Oil R&D Sub-Committee, the Abu Dhabi Co. for Onshore Oil Operations, the Zakum Development Co., the Abu Dhabi Marine Operating Co. and the Petroleum Institute of the United Arab Emirates supported the research.


Story Source:

The above story is based on materials provided by Rice University. The original article was written by Mike Williams. Note: Materials may be edited for content and length.


Journal Reference:

  1. Charles A. Conn, Kun Ma, George J. Hirasaki, Sibani Lisa Biswal. Visualizing oil displacement with foam in a microfluidic device with permeability contrast. Lab on a Chip, 2014; DOI: 10.1039/C4LC00620H

Cite This Page:

Rice University. "Foam favorable for oil extraction: Experiments visualize methods for enhanced recovery from wells." ScienceDaily. ScienceDaily, 12 August 2014. <www.sciencedaily.com/releases/2014/08/140812163800.htm>.
Rice University. (2014, August 12). Foam favorable for oil extraction: Experiments visualize methods for enhanced recovery from wells. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2014/08/140812163800.htm
Rice University. "Foam favorable for oil extraction: Experiments visualize methods for enhanced recovery from wells." ScienceDaily. www.sciencedaily.com/releases/2014/08/140812163800.htm (accessed October 31, 2014).

Share This



More Earth & Climate News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Raw: Hawaii Lava Approaching Village Road

Raw: Hawaii Lava Approaching Village Road

AP (Oct. 30, 2014) The lava flow on the Big Island of Hawaii was 225 yards from Pahoa Village Road on Wednesday night. The lava is slowing down but still approaching the village. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Endangered Carpathian Ponies Are Making a Comeback in Poland

Endangered Carpathian Ponies Are Making a Comeback in Poland

AFP (Oct. 29, 2014) At the foot of the rugged Carpathian mountains near the Polish-Ukrainian border, ranchers and scientists are trying to protect the Carpathian pony, known as the Hucul in Polish. Duration: 02:17 Video provided by AFP
Powered by NewsLook.com
Deadly Mudslide in Sri Lanka Buries Houses

Deadly Mudslide in Sri Lanka Buries Houses

AP (Oct. 29, 2014) A mudslide triggered by monsoon rains buried scores of workers' houses at a tea plantation in central Sri Lanka on Wednesday, killing at least 10 people and leaving more than 250 missing, an official said. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins