Featured Research

from universities, journals, and other organizations

Important clue found for potential treatments for absence seizures

Date:
August 21, 2014
Source:
Institute for Basic Science
Summary:
A group of researchers has succeeded in revealing a principle mechanism of a neural network in the human brain, which will provide an important clue to potential treatments for absence seizures. Absence seizures are believed to be elicited by T-type calcium channels in the thalamic reticular nucleus of the brain that regulate influxes of calcium. These channels enable thalamic reticular nucleus neurons to generate burst firing, leading the neurons to enter a hyper-excited state.

A group of Korean researchers have succeeded in revealing a principle mechanism of a neural network in the human brain, which will provide an important clue to potential treatments for absence seizures.

Related Articles


Absence seizures are believed to be elicited by T-type calcium channels in the thalamic reticular nucleus of the brain that regulate influxes of calcium. These channels enable thalamic reticular nucleus neurons to generate burst firing, leading the neurons to enter a hyper-excited state.

In order to identify the relationship between burst firing and absence seizures, the researchers conducted an experiment to induce absence seizures in mice using gene targeting techniques to delete the T-type calcium channel CaV3.3. The results showed that mice that received a complete genetic deletion of the T-type calcium channel, which in turn suppressed burst firing in the thalamic reticular nucleus, exhibited an increased frequency of absence seizures.

Moreover, the researchers observed for the first time ever that tonic firing also increased in such mice. The study was the first to discover that tonic firing plays a key role in the induction of absence seizure, which contradicts the existing hypothesis and carries significant implications for absence seizure treatment research.

The study is meaningful in respect to the fact that it calls into question the role of the T-type calcium channel in the reticular thalamus, and is expected to provide an important theoretical foundation for understanding its role in the mechanism of absence seizures, as well as developing effective treatment methods for absence epilepsy.

The findings were published online, July 28, in the journal, the Proceedings of the National Academy of Sciences of the United States of America (PNAS).


Story Source:

The above story is based on materials provided by Institute for Basic Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. E. Lee, J. Lee, C. Latchoumane, B. Lee, S.-J. Oh, Z. A. Saud, C. Park, N. Sun, E. Cheong, C.-C. Chen, E.-J. Choi, C. J. Lee, H.-S. Shin. Rebound burst firing in the reticular thalamus is not essential for pharmacological absence seizures in mice. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1408609111

Cite This Page:

Institute for Basic Science. "Important clue found for potential treatments for absence seizures." ScienceDaily. ScienceDaily, 21 August 2014. <www.sciencedaily.com/releases/2014/08/140821090015.htm>.
Institute for Basic Science. (2014, August 21). Important clue found for potential treatments for absence seizures. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2014/08/140821090015.htm
Institute for Basic Science. "Important clue found for potential treatments for absence seizures." ScienceDaily. www.sciencedaily.com/releases/2014/08/140821090015.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins