Featured Research

from universities, journals, and other organizations

Electric sparks may alter evolution of lunar soil

Date:
August 21, 2014
Source:
University of New Hampshire
Summary:
The moon appears to be a tranquil place, but new modeling suggests that, over the eons, periodic storms of solar energetic particles may have significantly altered the properties of the soil in the moon's coldest craters through the process of sparking -- a finding that could change our understanding of the evolution of planetary surfaces in the solar system.

This illustration shows a permanently shadowed region of the moon undergoing subsurface sparking (the "lightning bolts"), which ejects vaporized material (the "clouds") from the surface. Subsurface sparking occurs at a depth of about one millimeter.
Credit: Image not to scale. Courtesy of Andrew Jordan.

The moon appears to be a tranquil place, but modeling done by University of New Hampshire and NASA scientists suggests that, over the eons, periodic storms of solar energetic particles may have significantly altered the properties of the soil in the moon's coldest craters through the process of sparking -- a finding that could change our understanding of the evolution of planetary surfaces in the solar system.

Related Articles


The study, published recently in the Journal of Geophysical Research-Planets, proposes that high-energy particles from uncommon, large solar storms penetrate the moon's frigid, polar regions and electrically charge the soil. The charging may create sparking, or electrostatic breakdown, and this "breakdown weathering" process has possibly changed the very nature of the moon's polar soil, suggesting that permanently shadowed regions, which hold clues to our solar system's past, may be more active than previously thought.

"Decoding the history recorded within these cold, dark craters requires understanding what processes affect their soil," says Andrew Jordan of the UNH Institute for the Study of Earth, Oceans, and Space, lead author of the paper. "To that end, we built a computer model to estimate how high-energy particles detected by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on board NASA's Lunar Reconnaissance Orbiter (LRO) can create significant electric fields in the top layer of lunar soil."

The scientists also used data from the Electron, Proton, and Alpha Monitor (EPAM) on the Advanced Composition Explorer (ACE). CRaTER, which is led by scientists from UNH, and EPAM both detect high-energy particles, including solar energetic particles (SEPs). SEPs, after being created by solar storms, stream through space and bombard the moon. These particles can build up electric charges faster than the soil can dissipate them and may cause sparking, particularly in the polar cold of permanently shadowed regions -- unique lunar sites as cold as minus 240 degrees Celsius and known to contain water ice.

Says Jordan, "Sparking is a process in which electrons, released from the soil grains by strong electric fields, race through the material so quickly that they vaporize little channels." Repeated sparking with each large solar storm could gradually grow these channels large enough to fragment the grains, disintegrating the soil into smaller particles of distinct minerals, Jordan and colleagues hypothesize.

The next phase of this research will involve investigating whether other instruments aboard LRO could detect evidence for sparking in lunar soil, as well as improving the model to better understand the process and its consequences.

"If breakdown weathering occurs on the moon, then it has important implications for our understanding of the evolution of planetary surfaces in the solar system, especially in extremely cold regions that are exposed to harsh radiation from space," says coauthor Timothy Stubbs of the NASA Goddard Space Flight Center.


Story Source:

The above story is based on materials provided by University of New Hampshire. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. P. Jordan, T. J. Stubbs, J. K. Wilson, N. A. Schwadron, H. E. Spence, C. J. Joyce. Deep dielectric charging of regolith within the Moon's permanently shadowed regions. Journal of Geophysical Research: Planets, 2014; DOI: 10.1002/2014JE004648

Cite This Page:

University of New Hampshire. "Electric sparks may alter evolution of lunar soil." ScienceDaily. ScienceDaily, 21 August 2014. <www.sciencedaily.com/releases/2014/08/140821102431.htm>.
University of New Hampshire. (2014, August 21). Electric sparks may alter evolution of lunar soil. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/08/140821102431.htm
University of New Hampshire. "Electric sparks may alter evolution of lunar soil." ScienceDaily. www.sciencedaily.com/releases/2014/08/140821102431.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Space & Time News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Spokesman: 'NORAD Ready to Track Santa'

Spokesman: 'NORAD Ready to Track Santa'

AP (Dec. 19, 2014) Pentagon spokesman Rear Adm. John Kirby said that NORAD is ready to track Santa Claus as he delivers gifts next week. Speaking tongue-in-cheek, he said if Santa drops anything off his sleigh, "we've got destroyers out there to pick them up." (Dec. 19) Video provided by AP
Powered by NewsLook.com
NASA's Planet-Finding Kepler Mission Isn't Over After All

NASA's Planet-Finding Kepler Mission Isn't Over After All

Newsy (Dec. 18, 2014) More than a year after NASA declared the Kepler spacecraft broken beyond repair, scientists have figured out how to continue getting useful data. Video provided by Newsy
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins