Featured Research

from universities, journals, and other organizations

Drug used for DNA repair defects could treat leukemia, other cancers more effectively

Date:
August 25, 2014
Source:
National University of Singapore
Summary:
A drug originally designed for killing a limited type of cancer cells with DNA repair defects could potentially be used to treat leukemia and other cancers, scientists have found. In this study, the research team also showed the link between the RUNX family genes and the pathway of a rare human congenital disease called Fanconi anemia for the first time.

A team of scientists led by Research Associate Professor Motomi Osato and Professor Yoshiaki Ito from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS) found that a drug originally designed for killing a limited type of cancer cells with DNA repair defects could potentially be used to treat leukemia and other cancers.

Related Articles


The new study suggests that treatment with poly (ADP-ribose) polymerase (PARP) inhibitors, together with standard chemotherapy drugs, could be more effective in combating leukemia. In the same study, researchers found that the inactivation of RUNX genes causes DNA repair defects and promotes the development of leukemia and other cancers. The study was first published online in the leading journal Cell Reports last month.

Unlike other cancers which are more commonly seen in the elderly, leukemia is notorious for its high prevalence among young people. There has been little advancement in the treatment of leukemia. Chemotherapy with or without hematopoietic stem cell transplantation remains the current standard of care, resulting in a cure rate of around 50 per cent. The RUNX family genes are among the most frequently inactivated genes in leukemia and other cancers. According to previous studies, RUNX1 is one of the most frequently mutated genes in leukemia and RUNX3 is associated with the development of the disease.

In this study, the research team also showed the link between the RUNX family genes and the pathway of a rare human congenital disease called Fanconi anemia for the first time. The disease is caused by mutations in one of the 15 genes responsible for the repair of a specific type of damaged DNA. In the early stages of this study, the researchers found that RUNX deficiency resulted in an inability to produce blood cells and a massive expansion of abnormal hematopoietic cells. They recognised that these clinical manifestations are symptoms of Fanconi anemia and started investigating RUNX functions in this DNA repair pathway.

Further research showed that RUNX proteins play a critical and central role in the Fanconi anemia pathway by facilitating the recruitment of a protein involved in the repair of DNA damage called FANCD2 to sites of DNA damage. This previously unknown relationship between RUNX and Fanconi anemia prompted the research team to test the possibility that PARP inhibitors, a drug originally designed for killing a limited type of cancer cells with DNA repair defects, could be applied in the treatment of leukemia and cancers with RUNX alterations. These types of cancer were previously not thought to have DNA repair defects. The researchers demonstrated that the drug was effective in the treatment of leukemia and other cancers in cell culture experiments.

Dr Osato said, "Common sense is often a veil that keeps us from understanding the truth. PARP inhibitors have been with us for quite some time, but nobody has realised their application for leukemia. Our study has shed light on the possibility of a more effective treatment using a combined therapy with PARP inhibitors which can potentially be extended to other types of common cancers."

The team is currently conducting further drug efficacy testing with xenograft models, as a preclinical study.


Story Source:

The above story is based on materials provided by National University of Singapore. Note: Materials may be edited for content and length.


Journal Reference:

  1. ChelsiaQiuxia Wang, Vaidehi Krishnan, LavinaSierra Tay, DesmondWaiLoon Chin, CaiPing Koh, JingYuan Chooi, GiselleSekSuan Nah, Linsen Du, Bindya Jacob, Namiko Yamashita, SoakKuan Lai, TuanZea Tan, Seiichi Mori, Ichiro Tanuichi, Vinay Tergaonkar, Yoshiaki Ito, Motomi Osato. Disruption of Runx1 and Runx3 Leads to Bone Marrow Failure and Leukemia Predisposition due to Transcriptional and DNA Repair Defects. Cell Reports, 2014; 8 (3): 767 DOI: 10.1016/j.celrep.2014.06.046

Cite This Page:

National University of Singapore. "Drug used for DNA repair defects could treat leukemia, other cancers more effectively." ScienceDaily. ScienceDaily, 25 August 2014. <www.sciencedaily.com/releases/2014/08/140825084450.htm>.
National University of Singapore. (2014, August 25). Drug used for DNA repair defects could treat leukemia, other cancers more effectively. ScienceDaily. Retrieved April 25, 2015 from www.sciencedaily.com/releases/2014/08/140825084450.htm
National University of Singapore. "Drug used for DNA repair defects could treat leukemia, other cancers more effectively." ScienceDaily. www.sciencedaily.com/releases/2014/08/140825084450.htm (accessed April 25, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, April 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

85 Killed in Niger by Meningitis Since Start of Year

85 Killed in Niger by Meningitis Since Start of Year

AFP (Apr. 24, 2015) A meningitis outbreak in Niger has killed 85 people since the start of the year prompting authorities to close schools in the capital Niamey until Monday. Video provided by AFP
Powered by NewsLook.com
C-Section Births a Trend in Brazil

C-Section Births a Trend in Brazil

AFP (Apr. 24, 2015) More than half of Brazil&apos;s babies are born via cesarean section, as mothers and doctors opt for a faster and less painful experience despite the health risks. Duration: 02:02 Video provided by AFP
Powered by NewsLook.com
Anti-Malaria Jab Hope

Anti-Malaria Jab Hope

Reuters - News Video Online (Apr. 24, 2015) The world&apos;s first anti-malaria vaccine could get the go-ahead for use in Africa from October if approved by international regulators. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins