Featured Research

from universities, journals, and other organizations

How nerve cells communicate with each other over long distances: Travelling by resonance

Date:
August 29, 2014
Source:
Albert-Ludwigs-Universität Freiburg
Summary:
How nerve cells within the brain communicate with each other over long distances has puzzled scientists for decades. The way networks of neurons connect and how individual cells react to incoming pulses in principle makes communication over large distances impossible. Scientists provide now a possible answer how the brain can function nonetheless: by exploiting the powers of resonance.

Resonance in the activity of nerve cells (left) allows activity within the brain to travel over large distances, e.g. from the back of the head to the front during the processing of visual stimuli.
Credit: Gunnar Grah/BrainLinks-BrainTools

How nerve cells within the brain communicate with each other over long distances has puzzled scientists for decades. The way networks of neurons connect and how individual cells react to incoming pulses in principle makes communication over large distances impossible. Scientists from Germany and France provide now a possible answer how the brain can function nonetheless: by exploiting the powers of resonance.

As Gerald Hahn, Alejandro F. Bujan and colleagues describe in the journal PLoS Computational Biology, the ability of networks of neurons to resonate can amplify oscillations in the activity of nerve cells, allowing signals to travel much farther than in the absence of resonance. The team from the cluster of excellence BrainLinks-BrainTools and the Bernstein Center at the University of Freiburg and the UNIC department of the French Centre national de la recherche scientifique in Gif-sur-Yvette created a computer model of networks of nerve cells and analyzed its properties for signal propagation.

Earlier propositions how information travels through the brain had the flaw of being biologically implausible. They either postulated strong connections between distant brain areas for which there was no evidence, or they required a global mechanism setting these distant parts of the brain into linked oscillations. However, nobody could explain how this could actually be implemented.

The simulation study of Hahn and Bujan required neither unrealistic network properties nor the existence of a pacemaker for the brain. Instead, they found that resonance could be the key to long-distance communication in networks with relatively few and weak connections, as it is the case in the brain. Not all nerve cells excite other cells; some inhibit the activity of others. This means that the activity in a network can oscillate around a certain level of activity as a result of the interplay of excitation and inhibition. These networks typically have preferred frequencies at which oscillations are particularly strong, just as a taut string on a violin has a preferred frequency. If the activity tunes into this frequency, pulses propagate much farther. As the scientists point out, the combination of oscillatory signals together with resonance induced amplification may be the only possible form of long distance communication in certain cases. They further suggest that a network's ability to change its preferred frequency may play a role in the way how information is at times processed differently in the brain.


Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gerald Hahn, Alejandro F. Bujan, Yves Frégnac, Ad Aertsen, Arvind Kumar. Communication through Resonance in Spiking Neuronal Networks. PLoS Computational Biology, 2014; 10 (8): e1003811 DOI: 10.1371/journal.pcbi.1003811

Cite This Page:

Albert-Ludwigs-Universität Freiburg. "How nerve cells communicate with each other over long distances: Travelling by resonance." ScienceDaily. ScienceDaily, 29 August 2014. <www.sciencedaily.com/releases/2014/08/140829083858.htm>.
Albert-Ludwigs-Universität Freiburg. (2014, August 29). How nerve cells communicate with each other over long distances: Travelling by resonance. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2014/08/140829083858.htm
Albert-Ludwigs-Universität Freiburg. "How nerve cells communicate with each other over long distances: Travelling by resonance." ScienceDaily. www.sciencedaily.com/releases/2014/08/140829083858.htm (accessed October 20, 2014).

Share This



More Mind & Brain News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Court Ruling Means Kids' Online Activity Could Be On Parents

Court Ruling Means Kids' Online Activity Could Be On Parents

Newsy (Oct. 17, 2014) — In a ruling attorneys for both sides agreed was a first of its kind, a Georgia appeals court said parents can be held liable for what kids put online. Video provided by Newsy
Powered by NewsLook.com
The Best Foods To Boost Your Mood

The Best Foods To Boost Your Mood

Buzz60 (Oct. 17, 2014) — Feeling down? Reach for the refrigerator, not the medicine cabinet! TC Newman (@PurpleTCNewman) shares some of the best foods to boost your mood. Video provided by Buzz60
Powered by NewsLook.com
You Can Get Addicted To Google Glass, Apparently

You Can Get Addicted To Google Glass, Apparently

Newsy (Oct. 15, 2014) — Researchers claim they’ve diagnosed the first example of the disorder in a 31-year-old U.S. Navy serviceman. Video provided by Newsy
Powered by NewsLook.com
First Confirmed Case Of Google Glass Addiction

First Confirmed Case Of Google Glass Addiction

Buzz60 (Oct. 15, 2014) — A Google Glass user was treated for Internet Addiction Disorder caused from overuse of the device. Morgan Manousos (@MorganManousos) has the details on how many hours he spent wearing the glasses, and what his symptoms were. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins