Featured Research

from universities, journals, and other organizations

Researchers define spontaneous retinal neovascular mouse model

Date:
September 4, 2014
Source:
Massachusetts Eye and Ear Infirmary
Summary:
Researchers have characterized a novel mutant mouse model, termed neoretinal vascularization 2, which develops abnormal neovessels from retinal vascular plexus. Their hope is this new model will help them understand AMD and develop new treatments for the disease.

Neovascular age-related macular degeneration (AMD), which involves formation of abnormal blood vessels in the retina, is a leading cause of vision loss. A subgroup of neovascular AMD, known as retinal angiomatous proliferation (RAP) disease, occurs when neovessels originating from the inner retinal vascular bed grow toward the outer retina and form leaky pathologic vessels beneath the retina.

Related Articles


In a study featured in the Sept. 4 issue of PLOS ONE, researchers from Massachusetts Eye and Ear/Schepens Eye Research Institute, Boston Children's Hospital, and Harvard Medical School (HMS) characterized a novel mutant mouse model, termed neoretinal vascularization (NRV) 2, which develops abnormal neovessels from retinal vascular plexus. Their hope is this new model will help them understand AMD and develop new treatments for the disease. The new mouse strain was generated through the Jackson Laboratory Eye Mutant Screening Program. The Jackson Laboratory is an independent, nonprofit organization focusing on mammalian genetics research to advance human health.

The investigation, led by Kip Connor, Ph.D., HMS Assistant Professor of Ophthalmology and Assistant Scientist at Mass. Eye and Ear , demonstrated that NRV2 mice show multiple areas of retinal depigmentation and neovascularization, which occur spontaneously and are concurrent with the presence of the abnormal blood vessels in the retina during early postnatal days. Furthermore, they showed that the NRV2 neovascularization originates from the retinal vascular plexus and grows toward the subretinal space. Neovascular features in the NRV2 mouse strain mimic the early clinical stages of RAP in humans. "It is our hope that future studies using this mouse model will allow us to develop novel, specific therapeutics that result in better visual outcomes and quality of life for patients suffering from AMD, including RAP," Dr. Connor explained. 1In the study, researchers focused on the characterization of the ocular phenotype and etiology of angiogenesis in NRV2 mice. The phenotypic changes within the retina in NRV2 mice were evaluated by fundus photography, fluorescein angiography, optical coherence tomography, immunohistochemical and electron microscopic analysis. The pathological neovascularization was imaged by confocal microscopy and reconstructed using three-dimensional image analysis software. The researchers found that NRV2 mice developed multifocal retinal depigmentation in the posterior fundus spontaneously. The vascular leakage observed correlated with the areas of depigmentation by fluorescein angiography. Moreover, the three-dimensional reconstruction of retinal vasculature clearly revealed that the spontaneous angiogenesis arose from the retinal vascular plexus at postnatal day (p)15 and extended through the outer retina toward the subretinal space.

"Despite several mouse models of retinal angiogenesis, the underlying etiopathogenesis and mode of disease progression in AMD patients with RAP remain to be elucidated," said Eiichi Hasegawa, Ph.D., lead author of the paper. "We anticipate this mouse model could be a useful tool to define the molecular pathway and the specific genes involved in retinal angiogenesis and development of novel anti-angiogenic therapies."


Story Source:

The above story is based on materials provided by Massachusetts Eye and Ear Infirmary. Note: Materials may be edited for content and length.


Journal Reference:

  1. Eiichi Hasegawa, Harry Sweigard, Deeba Husain, Ana M. Olivares, Bo Chang, Kaylee E. Smith, Amy E. Birsner, Robert J. D’Amato, Norman A. Michaud, Yinan Han, Demetrios G. Vavvas, Joan W. Miller, Neena B. Haider, Kip M. Connor. Characterization of a Spontaneous Retinal Neovascular Mouse Model. PLOS ONE, September 2014 DOI: 10.1371/journal.pone.0106507

Cite This Page:

Massachusetts Eye and Ear Infirmary. "Researchers define spontaneous retinal neovascular mouse model." ScienceDaily. ScienceDaily, 4 September 2014. <www.sciencedaily.com/releases/2014/09/140904141957.htm>.
Massachusetts Eye and Ear Infirmary. (2014, September 4). Researchers define spontaneous retinal neovascular mouse model. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2014/09/140904141957.htm
Massachusetts Eye and Ear Infirmary. "Researchers define spontaneous retinal neovascular mouse model." ScienceDaily. www.sciencedaily.com/releases/2014/09/140904141957.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins