New! Sign up for our free email newsletter.
Science News
from research organizations

Monitoring magnetospheres: Debunking theory behind massive stars

May 26, 2015
Queen's University
Students researching magnetic, massive stars, have uncovered questions concerning the behavior of plasma within their magnetospheres.

Queen's University PhD student Matt Shultz is researching magnetic, massive stars, and his research has uncovered questions concerning the behaviour of plasma within their magnetospheres.

Drawing upon the extensive dataset assembled by the international Magnetism in Massive Stars (MiMeS) collaboration, led by Mr. Shultz's supervisor, Queen's professor Gregg Wade, along with some of his own observations collected with both the Canada-France-Hawaii Telescope and the European Southern Observatory's Very Large Telescope, Mr. Shultz is conducting the first systematic population study of magnetosphere-host stars.

"All massive stars have winds: supersonic outflows of plasma driven by the stars' intense radiation. When you put this plasma inside a magnetic field you get a stellar magnetosphere," explains Mr. Shultz (Physics, Engineering Physics and Astronomy). "Since the 1980s, theoretical models have generally found that the plasma should escape the magnetosphere in sporadic, violent eruptions called centrifugal breakout events, triggered when the density of plasma grows beyond the ability of the magnetic field to contain.

"However, no evidence of this dramatic process has yet been observed, so the community has increasingly been calling that narrative into question."

Before now, obvious disagreements with theory had been noted primarily for a single, particularly well-studied star. Studying the full population of magnetic, massive stars with detectable magnetospheres, Mr. Shultz has determined that the plasma density within all such magnetospheres is far lower than the limiting value implied by the centrifugal breakout model. This suggests that plasma might be escaping gradually, maintaining magnetospheres in an essentially steady state.

"We don't know yet what is going on," says Mr. Shultz. "But, when centrifugal breakout was first identified as the most likely process for mass escape, only the simplest diffusive mechanisms were ruled out. Our understanding of space plasmas has developed quite a bit since then. We now need to go back and look more closely at the full range of diffusive mechanisms and plasma instabilities. There are plenty to choose from: the real challenge is developing the theoretical tools that will be necessary to test them."

Mr. Shultz is presenting his research at the Canadian Astronomical Society Conference at McMaster University.

Story Source:

Materials provided by Queen's University. Original written by Anne Craig. Note: Content may be edited for style and length.

Cite This Page:

Queen's University. "Monitoring magnetospheres: Debunking theory behind massive stars." ScienceDaily. ScienceDaily, 26 May 2015. <>.
Queen's University. (2015, May 26). Monitoring magnetospheres: Debunking theory behind massive stars. ScienceDaily. Retrieved June 14, 2024 from
Queen's University. "Monitoring magnetospheres: Debunking theory behind massive stars." ScienceDaily. (accessed June 14, 2024).

Explore More

from ScienceDaily