New! Sign up for our free email newsletter.
Science News
from research organizations

Releasing brakes on biocatalysis

Date:
November 29, 2023
Source:
Ruhr-University Bochum
Summary:
Enzymes from microorganisms can produce hydrogen (H2) under certain conditions, which makes them potential biocatalysts for biobased H2 technologies. In order to make this hydrogen production efficient, researchers are trying to identify and eliminate possible limiting factors. These include formaldehyde, which occurs naturally as a metabolic product in cells and inhibits the particularly efficient [FeFe] hydrogenase.
Share:
FULL STORY

Formaldehyde can inhibit enzymes that produce hydrogen particularly efficiently. Researchers from Bochum have discovered how this can be prevented.

Enzymes from microorganisms can produce hydrogen (H2) under certain conditions, which makes them potential biocatalysts for biobased H2 technologies. In order to make this hydrogen production efficient, researchers are trying to identify and eliminate possible limiting factors. These include formaldehyde, which occurs naturally as a metabolic product in cells and inhibits the particularly efficient [FeFe] hydrogenase. A team from the work group Photobiotechnology at Ruhr University Bochum, Germany, was able to elucidate and switch off the underlying mechanism.

How a preservative affects H2-forming biocatalysts

Formaldehyde is known as a preservative, among other things, but it also occurs as a natural metabolite in living cells. Twelve years ago, scientists from the University of Oxford, UK, and Ruhr University Bochum, Germany, showed that this omnipresent molecule inhibits a certain class of biocatalysts, namely the particularly efficient hydrogen-generating hydrogenases of the two-iron type -- so-called [FeFe]-hydrogenases. "This was an interesting discovery, because formaldehyde could inhibit both the natural H2 metabolism of microorganisms and isolated hydrogenases in biotechnological applications," explains Dr Jifu Duan, first author of the study.

Molecular mechanism of formaldehyde poisoning elucidated

After various theoretical studies had hypothesized how the formaldehyde molecule might influence [FeFe]-hydrogenases, a team of researchers led by Jifu Duan and Professor Eckhard Hofmann at Ruhr University has now succeeded in elucidating the molecular mechanism experimentally. Using structures of formaldehyde-treated [FeFe]-hydrogenases obtained by protein crystallography, they were able to show that formaldehyde reacts with the so-called active center of the biocatalysts -- an inorganic protein part where protons and electrons are converted to H2. In addition, however, formaldehyde combines with another very important protein part, which is necessary for the transport of protons to the active center by means of a sulfur-containing chemical group. When the scientists replaced this part with another, formaldehyde was hardly able to exert its inhibitory effect.

The new findings could play a role in H2 technologies

"Future biotechnological applications of [FeFe]-hydrogenases may well involve the presence of formaldehyde, so that our modified formaldehyde-resistant biocatalysts could be used here," explains Jifu Duan. "We also believe that our findings can be transferred to other biocatalysts." This could play a role for bio-based industrial processes, but also for understanding metabolic pathways in living organisms.


Story Source:

Materials provided by Ruhr-University Bochum. Original written by Meike Drießen. Note: Content may be edited for style and length.


Journal Reference:

  1. Jifu Duan, Astrit Veliju, Oliver Lampret, Lingling Liu, Shanika Yadav, Ulf-Peter Apfel, Fraser A. Armstrong, Anja Hemschemeier, Eckhard Hofmann. Insights into the Molecular Mechanism of Formaldehyde Inhibition of [FeFe]-Hydrogenases. Journal of the American Chemical Society, 2023; DOI: 10.1021/jacs.3c07800

Cite This Page:

Ruhr-University Bochum. "Releasing brakes on biocatalysis." ScienceDaily. ScienceDaily, 29 November 2023. <www.sciencedaily.com/releases/2023/11/231129112510.htm>.
Ruhr-University Bochum. (2023, November 29). Releasing brakes on biocatalysis. ScienceDaily. Retrieved February 22, 2024 from www.sciencedaily.com/releases/2023/11/231129112510.htm
Ruhr-University Bochum. "Releasing brakes on biocatalysis." ScienceDaily. www.sciencedaily.com/releases/2023/11/231129112510.htm (accessed February 22, 2024).

Explore More
from ScienceDaily

RELATED STORIES