New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Neutrino

The neutrino is an elementary particle. It has half-integer spin and is therefore a fermion. All neutrinos observed to date have left-handed chirality. Although they had been considered massless for many years, recent experiments have shown their mass to be non-zero. Because it is an electrically neutral lepton, the neutrino interacts neither by way of the strong nor the electromagnetic force, but only through the weak force and gravity. Because the cross section in weak nuclear interactions is very small, neutrinos can pass through matter almost unhindered. For typical neutrinos produced in the sun (with energies of a few MeV), it would take approximately one light year of lead to block half of them. Detection of neutrinos is therefore challenging, requiring large detection volumes or high intensity artificial neutrino beams. There are three known types (flavors) of neutrinos: electron neutrino, muon neutrino and tau neutrino, named after their partner leptons in the Standard Model.

Related Stories
 


Matter & Energy News

December 9, 2025

SQUIRE aims to detect exotic spin-dependent interactions using quantum sensors deployed in space, where speed and environmental conditions vastly improve sensitivity. Orbiting sensors tap into ...
Scientists have discovered how to electrically power insulating nanoparticles using organic molecules that act like tiny antennas. These hybrids generate extremely pure near-infrared light, ideal for medical diagnostics and advanced communications. ...
Kyushu University scientists have achieved a major leap in fuel cell technology by enabling efficient proton transport at just 300°C. Their scandium-doped oxide materials create a wide, soft pathway that lets protons move rapidly without clogging ...
Researchers engineered a strained germanium layer on silicon that allows charge to move faster than in any silicon-compatible material to date. This record mobility could lead to chips that run cooler, faster, and with dramatically lower energy ...
Researchers have discovered a new way to grow graphene that deliberately adds structural defects to enhance its usefulness in electronics, sensors, catalysts, and more. Using a specially shaped molecule called azupyrene, scientists can produce ...
A UC Irvine team uncovered a never-before-seen quantum phase formed when electrons and holes pair up and spin in unison, creating a glowing, liquid-like state of matter. By blasting a custom-made material with enormous magnetic fields, the ...
Engineers have unlocked a new class of supercapacitor material that could rival traditional batteries in energy while charging dramatically faster. By redesigning carbon structures into highly curved, accessible graphene networks, the team achieved ...
Quantum communication is edging closer to reality thanks to a breakthrough in teleporting information between photons from different quantum dots—one of the biggest challenges in building a quantum internet. By creating nearly identical ...
Researchers have directly observed Floquet effects in graphene for the first time, settling a long-running scientific debate. Their ultrafast light-based technique demonstrates that graphene’s ...
Researchers have discovered a low-energy way to recycle Teflon® by using mechanical motion and sodium metal. The process turns the notoriously durable plastic into sodium fluoride that can be reused directly in chemical manufacturing. This creates ...
Europe is investing in a coordinated effort to develop high-power optical vortex technologies and train new specialists in the field. The HiPOVor network unites academia and industry to advance applications ranging from material processing to ...
Scientists have directly measured the minuscule electron sharing that makes precious-metal catalysts so effective. Their new technique, IET, reveals how molecules bind and react on metal surfaces with unprecedented clarity. The insights promise ...

Latest Headlines

updated 12:56 pm ET