New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Neutrino

The neutrino is an elementary particle. It has half-integer spin and is therefore a fermion. All neutrinos observed to date have left-handed chirality. Although they had been considered massless for many years, recent experiments have shown their mass to be non-zero. Because it is an electrically neutral lepton, the neutrino interacts neither by way of the strong nor the electromagnetic force, but only through the weak force and gravity. Because the cross section in weak nuclear interactions is very small, neutrinos can pass through matter almost unhindered. For typical neutrinos produced in the sun (with energies of a few MeV), it would take approximately one light year of lead to block half of them. Detection of neutrinos is therefore challenging, requiring large detection volumes or high intensity artificial neutrino beams. There are three known types (flavors) of neutrinos: electron neutrino, muon neutrino and tau neutrino, named after their partner leptons in the Standard Model.

Related Stories
 


Matter & Energy News

January 15, 2026

Foams were once thought to behave like glass, with bubbles frozen in place at the microscopic level. But new simulations reveal that foam bubbles are always shifting, even while the foam keeps its overall shape. Remarkably, this restless motion ...
Florida State University scientists have engineered a new crystal that forces atomic magnets to swirl into complex, repeating patterns. The effect comes from mixing two nearly identical compounds whose mismatched structures create magnetic tension ...
Scientists in South Korea have discovered a way to make all-solid-state batteries safer and more powerful using inexpensive materials. Instead of adding costly metals, they redesigned the battery’s internal structure to help lithium ions move ...
A team of physicists has discovered a surprisingly simple way to build nuclear clocks using tiny amounts of rare thorium. By electroplating thorium onto steel, they achieved the same results as years of work with delicate crystals — but far more ...
Nearly everything in the universe is made of mysterious dark matter and dark energy, yet we can’t see either of them directly. Scientists are developing detectors so sensitive they can spot particle interactions that might occur once in years or ...
Researchers have built a new platform that produces ultrashort UV-C laser pulses and detects them at room temperature using atom-thin materials. The light flashes last just femtoseconds and can be ...
Scientists are learning to engineer light in rich, multidimensional ways that dramatically increase how much information a single photon can carry. This leap could make quantum communication more secure, quantum computers more efficient, and sensors ...
A new chip-based quantum memory uses nanoprinted “light cages” to trap light inside atomic vapor, enabling fast, reliable storage of quantum information. The structures can be fabricated with extreme precision and filled with atoms in days ...
Scientists have found a way to see ultrafast molecular interactions inside liquids using an extreme laser technique once thought impossible for fluids. When they mixed nearly identical chemicals, one combination behaved strangely—producing less ...
Seeing plastic trash while hiking inspired a Rutgers chemist to rethink why synthetic plastics last forever while natural polymers don’t. By mimicking tiny structural features used in DNA and proteins, researchers designed plastics that remain ...
Scientists have developed molecular devices that can switch roles, behaving as memory, logic, or learning elements within the same structure. The breakthrough comes from precise chemical design that ...
A physicist has proposed a bold experiment that could allow gravitational waves to be manipulated using laser light. By transferring minute amounts of energy between light and gravity, the ...

Latest Headlines

updated 12:56 pm ET