New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Neutrino

The neutrino is an elementary particle. It has half-integer spin and is therefore a fermion. All neutrinos observed to date have left-handed chirality. Although they had been considered massless for many years, recent experiments have shown their mass to be non-zero. Because it is an electrically neutral lepton, the neutrino interacts neither by way of the strong nor the electromagnetic force, but only through the weak force and gravity. Because the cross section in weak nuclear interactions is very small, neutrinos can pass through matter almost unhindered. For typical neutrinos produced in the sun (with energies of a few MeV), it would take approximately one light year of lead to block half of them. Detection of neutrinos is therefore challenging, requiring large detection volumes or high intensity artificial neutrino beams. There are three known types (flavors) of neutrinos: electron neutrino, muon neutrino and tau neutrino, named after their partner leptons in the Standard Model.

Related Stories
 


Matter & Energy News

October 16, 2025

A team of engineers at North Carolina State University has designed a polymer “Chinese lantern” that can rapidly snap into multiple stable 3D shapes—including a lantern, a spinning top, and more—by compression or twisting. By adding a ...
Scientists have developed an ultra-thin, paper-like LED that emits a warm, sunlike glow, promising to revolutionize how we light up our homes, devices, and workplaces. By engineering a balance of red, yellow-green, and blue quantum dots, the ...
Scientists at EPFL have reimagined 3D printing by turning simple hydrogels into tough metals and ceramics. Their process allows multiple infusions of metal salts that form dense, high-strength structures without the porosity of earlier methods. ...
Researchers have found a way to extract almost every photon from diamond color centers, a key obstacle in quantum technology. Using hybrid nanoantennas, they precisely guided light from nanodiamonds into a single direction, achieving 80% efficiency ...
In a remarkable leap for quantum physics, researchers in Japan have uncovered how weak magnetic fields can reverse tiny electrical currents in kagome metals—quantum materials with a woven atomic structure that frustrates electrons into forming ...
An international team has confirmed that large quantum systems really do obey quantum mechanics. Using Bell’s test across 73 qubits, they proved the presence of genuine quantum correlations that can’t be explained classically. Their results show ...
Researchers at Columbia have created a chip that turns a single laser into a “frequency comb,” producing dozens of powerful light channels at once. Using a special locking mechanism to clean ...
Solar energy is now the cheapest source of power worldwide, driving a massive shift toward renewables. Falling battery prices and innovations in solar materials are making clean energy more reliable than ever. Yet, grid congestion and integration ...
A Penn State research team found that streetlights could double as affordable EV charging stations. After installing 23 units in Kansas City, they discovered these chargers were faster, cheaper, and more eco-friendly than traditional stations. Their ...
Scientists at OIST have, for the first time, directly tracked the elusive “dark excitons” inside atomically thin materials. These quantum particles could revolutionize information technology, as they are more stable and resistant to ...
Researchers have designed a new type of gravitational wave detector that operates in the milli-Hertz range, a region untouched by current observatories. Built with optical resonators and atomic clocks, the compact detectors can fit on a lab table ...
A team in Sweden has unraveled the hidden structure of a promising solar material using machine learning and advanced simulations. Their findings could unlock durable, ultra-efficient solar cells for ...

Latest Headlines

updated 12:56 pm ET