New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Potential energy

Potential energy is stored energy. Potential energy is the energy that exists by virtue of the relative positions (configurations) of the objects within a physical system. This form of energy has the potential to change the state of other objects around it, for example, the configuration or motion.

Various forms of energy can be grouped as potential energy. Each of these forms is associated with a particular kind of force acting in conjunction with some physical property of matter (such as mass, charge, elasticity, temperature etc). For example, gravitational potential energy is associated with the gravitational force acting on object's mass; elastic potential energy with the elastic force (ultimately electromagnetic force) acting on the elasticity of a deformed object; electrical potential energy with the coulombic force; strong nuclear force or weak nuclear force acting on the electric charge on the object; chemical potential energy, with the chemical potential of a particular atomic or molecular configuration acting on the atomic/molecular structure of the chemical substance that constitutes the object; thermal potential energy with the electromagnetic force in conjunction with the temperature of the object. For an example of gravitational potential energy, consider a book placed on top of a table. To raise the book from the floor to the table, work must be done, and energy supplied. (If the book is lifted by a person then this is provided by the chemical energy obtained from that person's food and then stored in the chemicals of the body.) Assuming perfect efficiency (no energy losses), the energy supplied to lift the book is exactly the same as the increase in the book's gravitational potential energy. The book's potential energy can be released by knocking it off the table. As the book falls, its potential energy is converted to kinetic energy. When the book hits the floor this kinetic energy is converted into heat and sound by the impact.

Related Stories
 


Matter & Energy News

January 7, 2026

Scientists are learning to engineer light in rich, multidimensional ways that dramatically increase how much information a single photon can carry. This leap could make quantum communication more secure, quantum computers more efficient, and sensors ...
A new chip-based quantum memory uses nanoprinted “light cages” to trap light inside atomic vapor, enabling fast, reliable storage of quantum information. The structures can be fabricated with extreme precision and filled with atoms in days ...
Scientists have found a way to see ultrafast molecular interactions inside liquids using an extreme laser technique once thought impossible for fluids. When they mixed nearly identical chemicals, one combination behaved strangely—producing less ...
Seeing plastic trash while hiking inspired a Rutgers chemist to rethink why synthetic plastics last forever while natural polymers don’t. By mimicking tiny structural features used in DNA and proteins, researchers designed plastics that remain ...
Scientists have developed molecular devices that can switch roles, behaving as memory, logic, or learning elements within the same structure. The breakthrough comes from precise chemical design that ...
A physicist has proposed a bold experiment that could allow gravitational waves to be manipulated using laser light. By transferring minute amounts of energy between light and gravity, the ...
A new advance in bromine-based flow batteries could remove one of the biggest obstacles to long-lasting, affordable energy storage. Scientists developed a way to chemically capture corrosive bromine during battery operation, keeping its ...
A new catalyst design could transform how acetaldehyde is made from renewable bioethanol. Researchers found that a carefully balanced mix of gold, manganese, and copper creates a powerful synergy that boosts efficiency while lowering operating ...
MIT researchers have designed a printable aluminum alloy that’s five times stronger than cast aluminum and holds up at extreme temperatures. Machine learning helped them zero in on the ideal recipe in a fraction of the time traditional methods ...
A major breakthrough in battery science reveals why promising single-crystal lithium-ion batteries haven’t lived up to expectations. Researchers found that these batteries crack due to uneven internal reactions, not the grain-boundary damage seen ...
Researchers found that U.S. metal mines already contain large amounts of critical minerals that are mostly going unused. Recovering even a small fraction of these byproducts could sharply reduce dependence on imports for materials essential to clean ...
A shiny gray crystal called platinum-bismuth-two hides an electronic world unlike anything scientists have seen before. Researchers discovered that only the crystal’s outer surfaces become superconducting—allowing electrons to flow with zero ...

Latest Headlines

updated 12:56 pm ET