Featured Research

from universities, journals, and other organizations

Researchers Discover How Tuberculosis Bacteria Invade Cells

Date:
August 24, 1997
Source:
Washington University School Of Medicine
Summary:
The bacterium that causes tuberculosis uses a surprisingly underhanded trick to invade cells, researchers at Washington University School of Medicine in St. Louis announced Aug. 27. The strategy is clever and effective -- and it may one day prove to be the disease's downfall.

St. Louis, Aug. 22, 1997 -- The bacterium that causes tuberculosis uses a surprisingly underhanded trick to invade cells, researchers at Washington University School of Medicine in St. Louis announced today. The strategy is clever and effective -- and it may one day prove to be the disease's downfall.

Related Articles


Understanding how the bacterium invades cells may be an important first step toward developing a vaccine to prevent tuberculosis, says Jeffrey S. Schorey, Ph.D., an instructor of medicine and lead author of a paper in the August 22, 1997, issue of Science. Although such a vaccine could be developed only after many more years of study, researchers are excited about the new insight into the common and deadly microbe.

"This study helps us understand what's special about this bacterium and what makes it such an effective pathogen," says Eric J. Brown, M.D., co-author of the paper. Brown is a professor of medicine and of cell biology and physiology at the School of Medicine.

Tuberculosis is a growing global menace that kills more people than any other infectious disease. Three million people die from it each year, and as many as one-third of the world's population is infected with Mycobacterium tuberculosis, the bacterium that causes the disease.

Researchers have long known that M. tuberculosis makes its living by preying on macrophages, the immune system warriors that usually consume bacteria. The bacterium enters a macrophage and apparently multiplies until the cell ruptures, releasing more bacteria to attack other macrophages.

Schorey, Brown and colleagues conducted test-tube studies with M. tuberculosis and a few of its close relatives including M. leprae, which causes leprosy, and M. avium, which frequently infects AIDS patients. The researchers found that all three bacteria share a special trick for finding and invading cells. They grab a protein discarded by the immune system and use it to lure the macrophages to their death.

Normally, when a bacterium enters the body, the immune system responds by tagging the bug with certain proteins that alert the macrophages. Any macrophage (literally "big eater") that detects the proteins will attach itself to the intruder and try to consume it.

Tagging a bug requires a highly choreographed interaction of many proteins, including one called C2a. When combined with another protein, C2a forms a potent enzyme that plays a major role in labeling intruders. After the job is done, C2a breaks off from its partner and floats in the blood with no known function.

Humans may have no use for discarded C2a, but it's apparently invaluable for the disease-causing mycobacteria. Schorey's experiments demonstrated that the bacteria grab onto the protein and use it to create a new label that helps bacteria adhere to the macrophage. The protein also seems to work like a pass key that gives the bacteria easy entrance to the cells. The researchers found that adding infinitesimal amounts of the protein to test tubes containing bacteria and macrophages greatly increased the number of infected cells.

Previous studies have described other invasion techniques used by mycobacteria, but the C2a strategy stands out for one major reason: It's used only by the types of mycobacteria that cause disease. "This is why we think C2a is important for the virulence of these bacteria," Schorey says.

The next important step is to find the bacterial molecule that interacts with C2a, Schorey says. He and his colleagues also plan to move beyond test-tube studies to observe mycobacteria in immune-compromised mice.

If researchers can find the molecule that binds to C2a, and if the results of animal studies echo the findings from the test-tube studies, this new invasion mechanism could form the basis for developing a novel vaccine, Schorey says.

###

This research was supported by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Washington University School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School Of Medicine. "Researchers Discover How Tuberculosis Bacteria Invade Cells." ScienceDaily. ScienceDaily, 24 August 1997. <www.sciencedaily.com/releases/1997/08/970824235231.htm>.
Washington University School Of Medicine. (1997, August 24). Researchers Discover How Tuberculosis Bacteria Invade Cells. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/1997/08/970824235231.htm
Washington University School Of Medicine. "Researchers Discover How Tuberculosis Bacteria Invade Cells." ScienceDaily. www.sciencedaily.com/releases/1997/08/970824235231.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins