Featured Research

from universities, journals, and other organizations

New Way To Drive Chemical Reactions: Collision Of Liquids At High Speed

Date:
October 10, 1997
Source:
University of Illinois at Urbana-Champaign
Summary:
When a liquid moves fast enough, gas bubbles form and collapse in a process called cavitation, heard in the babbling sounds of streams and rivers. University of Illinois chemists report that high-velocity liquids also can drive chemical reactions.

CHAMPAIGN, Ill. -- When a liquid moves fast enough, gas bubbles willform and collapse. This process -- called cavitation -- is responsiblefor the pleasant babbling sound of streams and rivers, and for the stealth-defyingsound of propellers on submarines. Chemists at the University of Illinoishave discovered that in addition to making noise, high-velocity liquidsalso can drive chemical reactions.

"By colliding two streams of liquids together at a combined speedof 450 mph, we can break some of the strongest chemical bonds," saidKenneth Suslick, a U. of I. professor of chemical sciences. "Withwater, for example, the oxygen-hydrogen bond ruptures. The fragments canrecombine to form hydrogen peroxide and other highly reactive intermediatesthat can destroy contaminants in the water."

Some contaminants can be destroyed directly by the implosive collapseof the bubbles. Other less volatile contaminants can be destroyed throughsecondary reactions with some of the fragments, such as free hydrogens andhydroxyl radicals -- both of which are extremely reactive. "This raisesthe possibility of using turbulent liquid jets as a simple way of purifyingwater contaminated with low levels of chemical waste," Suslick said.

The jets are made by pumping liquids at very high pressures through verysmall holes drilled in gemstones. "Only gems are hard enough to takethe pressure without cracking or eroding," Suslick said. Currently,liquid jets are used industrially for making emulsions (such as cosmeticlotions) and for cutting extremely hard materials.

"The chemistry of turbulent liquids comes from 'hydrodynamic cavitation,'which causes the formation, growth and implosive collapse of small gas bubblesin the moving liquid," Suslick said. "This is very similar tothe effects of high-intensity ultrasound in a liquid, where the collapseof sound-driven bubbles generates intense local heating, forming a hot spotin the cold liquid with a transient temperature of about 9,000 degrees Fahrenheit,the pressure of about 1,000 atmospheres and the duration of about a billionthof a second."

Any turbulent flow can cause cavitation in liquids, Suslick said. "Butgenerating bubbles doesn't necessarily generate chemistry. The bubbleshave to collapse pretty intensively to create the required heat and pressure. By colliding two liquid jets, we can concentrate the collisional energyin the bubbles."

There are only a few ways to force chemical reactions: heat, light,radiation and ultrasound are the common ones, Suslick said. "So, it'snot very often that we find a new way to drive chemistry, especially oneas simple as fast-moving liquids. Although we can create very-high-energychemistry using these liquid jets, the reaction rates are pretty slow sofar."

Suslick and graduate students Millan Mdleleni and Jeff Ries reportedtheir findings in the Oct. 1 issue of the Journal of the American ChemicalSociety.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "New Way To Drive Chemical Reactions: Collision Of Liquids At High Speed." ScienceDaily. ScienceDaily, 10 October 1997. <www.sciencedaily.com/releases/1997/10/971005124203.htm>.
University of Illinois at Urbana-Champaign. (1997, October 10). New Way To Drive Chemical Reactions: Collision Of Liquids At High Speed. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/1997/10/971005124203.htm
University of Illinois at Urbana-Champaign. "New Way To Drive Chemical Reactions: Collision Of Liquids At High Speed." ScienceDaily. www.sciencedaily.com/releases/1997/10/971005124203.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins