Featured Research

from universities, journals, and other organizations

New Way To Drive Chemical Reactions: Collision Of Liquids At High Speed

Date:
October 10, 1997
Source:
University of Illinois at Urbana-Champaign
Summary:
When a liquid moves fast enough, gas bubbles form and collapse in a process called cavitation, heard in the babbling sounds of streams and rivers. University of Illinois chemists report that high-velocity liquids also can drive chemical reactions.

CHAMPAIGN, Ill. -- When a liquid moves fast enough, gas bubbles willform and collapse. This process -- called cavitation -- is responsiblefor the pleasant babbling sound of streams and rivers, and for the stealth-defyingsound of propellers on submarines. Chemists at the University of Illinoishave discovered that in addition to making noise, high-velocity liquidsalso can drive chemical reactions.

"By colliding two streams of liquids together at a combined speedof 450 mph, we can break some of the strongest chemical bonds," saidKenneth Suslick, a U. of I. professor of chemical sciences. "Withwater, for example, the oxygen-hydrogen bond ruptures. The fragments canrecombine to form hydrogen peroxide and other highly reactive intermediatesthat can destroy contaminants in the water."

Some contaminants can be destroyed directly by the implosive collapseof the bubbles. Other less volatile contaminants can be destroyed throughsecondary reactions with some of the fragments, such as free hydrogens andhydroxyl radicals -- both of which are extremely reactive. "This raisesthe possibility of using turbulent liquid jets as a simple way of purifyingwater contaminated with low levels of chemical waste," Suslick said.

The jets are made by pumping liquids at very high pressures through verysmall holes drilled in gemstones. "Only gems are hard enough to takethe pressure without cracking or eroding," Suslick said. Currently,liquid jets are used industrially for making emulsions (such as cosmeticlotions) and for cutting extremely hard materials.

"The chemistry of turbulent liquids comes from 'hydrodynamic cavitation,'which causes the formation, growth and implosive collapse of small gas bubblesin the moving liquid," Suslick said. "This is very similar tothe effects of high-intensity ultrasound in a liquid, where the collapseof sound-driven bubbles generates intense local heating, forming a hot spotin the cold liquid with a transient temperature of about 9,000 degrees Fahrenheit,the pressure of about 1,000 atmospheres and the duration of about a billionthof a second."

Any turbulent flow can cause cavitation in liquids, Suslick said. "Butgenerating bubbles doesn't necessarily generate chemistry. The bubbleshave to collapse pretty intensively to create the required heat and pressure. By colliding two liquid jets, we can concentrate the collisional energyin the bubbles."

There are only a few ways to force chemical reactions: heat, light,radiation and ultrasound are the common ones, Suslick said. "So, it'snot very often that we find a new way to drive chemistry, especially oneas simple as fast-moving liquids. Although we can create very-high-energychemistry using these liquid jets, the reaction rates are pretty slow sofar."

Suslick and graduate students Millan Mdleleni and Jeff Ries reportedtheir findings in the Oct. 1 issue of the Journal of the American ChemicalSociety.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "New Way To Drive Chemical Reactions: Collision Of Liquids At High Speed." ScienceDaily. ScienceDaily, 10 October 1997. <www.sciencedaily.com/releases/1997/10/971005124203.htm>.
University of Illinois at Urbana-Champaign. (1997, October 10). New Way To Drive Chemical Reactions: Collision Of Liquids At High Speed. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/1997/10/971005124203.htm
University of Illinois at Urbana-Champaign. "New Way To Drive Chemical Reactions: Collision Of Liquids At High Speed." ScienceDaily. www.sciencedaily.com/releases/1997/10/971005124203.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins