Featured Research

from universities, journals, and other organizations

Biological Clocks No Longer Found Only In The Brain

Date:
December 1, 1997
Source:
National Science Foundation
Summary:
A recent discovery by a team of scientists, working in part through the National Science Foundation (NSF)'s Center for Biological Timing, challenges the strongly-held belief that 24-hour rhythms (biological clocks) are centrally controlled by the brain.

A recent discovery by a team of scientists, working in part through the National Science Foundation (NSF)'s Center for Biological Timing, challenges the strongly-held belief that 24-hour rhythms (biological clocks) are centrally controlled by the brain.

Related Articles


Using the fruit fly as a model system to study circadian rhythms, the researchers -- led by cell biologist Steve Kay of the Scripps Research Institute in San Diego, California -- sought to determine whether individual body parts would respond to changes in the light/dark cycle. In each appendage, clock genes turned on and off in unison, according to rhythms set by environmental light manipulations.

The scientists hope that understanding the location of the clock tissues and cells, as well as identifying which genes and proteins make up the biological cogs, will lead to new strategies for the treatment of disorders associated with jet lag, shift work and seasonal depression.

"These results are fundamental to understanding how the timing of cellular functions is integrated in complex organisms," says Christopher Platt, program director in NSF's neuroscience program. "This advance shows how basic research with a model system has a broad impact on fields from agriculture to human biology."

According to Kay, "Our findings confirm that body clocks run independently in many tissues outside the brain, and are reset by light, implying that cells harbor novel photoreceptors that aren't involved in vision."

The researchers borrowed some tricks from the world of bioluminescent organisms, to measure the genes that control clocks in animals. They fused the fruit flies' clock DNA to "glow" genes either from jellyfish or fireflies, to make glow-in-the-dark fruit flies.

Kay commented, "We found that all tissues we cultured from the whole animal were glowing on and off, demonstrating that lots of clocks are running throughout the fly, independently of the brain." Under normal light/dark conditions, the clock genes rhythmically luminesced in each of the segments -- head, thorax and abdomen. The clock genes were especially conspicuous in chemosensory cells at the base of hairs on the legs and wings and on the antennae and proboscis.

These clocks also ebbed and flowed autonomously in response to light, suggesting that circadian rhythms likely regulate a fruit fly's sense of smell, much as they influence light and pain sensitivity in mammals.

While the authors raise the possibility that this evidence challenges the current notions about the role of the brain as the seat that coordinates rhythms throughout the organism, they acknowledge that the brain still retains a certain distinction, even in a fruit fly. In the prolonged absence of light, the brain was the only organ in which the clock genes remained in sync.

A mammalian variant of the clock gene recently was identified, and another similar gene also has been found throughout the body of mice. According to Kay, the discovery of many non-brain clocks in fruit flies could well be true for humans. "In this case it might mean that our skin, liver or other peripheral tissues have their own clocks to control these local functions," he suggests.

Participating in the research were scientists Jeffrey Plautz of the Scripps Research Institute and Maki Kaneko and Jeffrey C. Hall of Brandeis University.

The study was also funded in part by the National Institute of Mental Health of the National Institutes of Health.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Biological Clocks No Longer Found Only In The Brain." ScienceDaily. ScienceDaily, 1 December 1997. <www.sciencedaily.com/releases/1997/12/971201065909.htm>.
National Science Foundation. (1997, December 1). Biological Clocks No Longer Found Only In The Brain. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/1997/12/971201065909.htm
National Science Foundation. "Biological Clocks No Longer Found Only In The Brain." ScienceDaily. www.sciencedaily.com/releases/1997/12/971201065909.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) — Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins