Featured Research

from universities, journals, and other organizations

Enzyme Protects Virus From Environmental Hazards

Date:
January 5, 1998
Source:
National Institute Of Allergy And Infectious Diseases
Summary:
An unusual enzyme never before seen in viruses appears to shield an AIDS-related skin disease virus from the ravages of ultraviolet (UV) radiation and the immune system, according to a study by NIAID researchers.

An unusual enzyme never before seen in viruses appears to shield an AIDS-related skin disease virus from the ravages of ultraviolet (UV) radiation and the immune system, according to a study by researchers from the National Institute of Allergy and Infectious Diseases (NIAID).

Related Articles


"This is an interesting finding that uncovers yet another strategy that viruses use to protect themselves from harsh environments," says NIAID Director Anthony S. Fauci, M.D.

The molluscum contagiosum virus (MCV causes a persistent and sometimes disfiguring skin disease common among HIV-infected individuals and others with weakened immune systems. In 1996, researchers led by Bernard Moss, M.D., Ph.D., chief of NIAID's Laboratory of Viral Diseases (LVD), reported the entire genetic sequence of MCV. Analysis of the MCV genome revealed a viral gene whose sequence was very similar to that of the gene for an important human enzyme, glutathione peroxidase. This enzyme neutralizes caustic chemicals called peroxides made by immune system cells to fight infection.

In the Jan. 2, 1998 issue of the journal Science, Dr. Moss and colleagues from the LVD and Harvard Institutes of Medicine in Boston, Mass., report that the MCV gene, like its human counterpart, encodes a protein that contains selenium, a relatively rare element found in only a small number of proteins. Previously, none of these so-called selenoproteins had been identified in viruses.

When the researchers engineered human cells to express the MCV selenoprotein, these cells were largely protected from exposure to UV radiation and peroxides. Ordinarily, explains Dr. Moss, UV radiation and peroxides are cytotoxic, causing cells to die through a process known as apoptosis.

These findings notwithstanding, Dr. Moss and his colleagues note that it is too early to determine definitively the actual role the selenoprotein plays within the virus. The lack of a good animal model of MCV infection and the virus's inability to grow in tissue culture hinder efforts to find this information. However, the researchers speculate that since MCV resides exclusively in human skin, the virus "captured" the selenoprotein gene as a means of defending itself against ultraviolet radiation and the immune system.

Based on the fact that the sequence of the MCV gene is nearly 75 percent identical to the sequence of the human glutathione peroxidase gene, they also speculate that the virus acquired the gene relatively recently in its evolutionary history. Other MCV genes that share sequence similarities with known human genes are only 20 to 25 percent identical to their human counterparts.

"This would seem to be a clever ploy for a virus that replicates in the epidermis," Dr. Moss and his co-authors conclude. Dr. Moss adds that in addition to advancing our understanding of how MCV interacts with its human host, this finding could provide useful insights into the workings of the human glutathione peroxidase enzyme. In future studies, he and his colleagues will continue to characterize and compare the viral and human proteins.

In addition to Dr. Moss, collaborators on this study included Joanna L. Shisler, Ph.D., and Tatiana G. Senkevich, Ph.D., both of the LVD, and Marla G. Berry, Ph.D., of the Harvard Institutes of Medicine in Boston, Mass. Dr. Berry's research was supported by a grant from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).

NIAID supports research on AIDS, malaria, tuberculosis and other infectious diseases, as well as allergies and immunology. NIAID and NIDDK are components of the National Institutes of Health (NIH), an agency of the U.S. Department of Health and Human Services. ###

Reference:
Shisler JL, Senkevich TG, Berry MJ, Moss B. Ultraviolet-induced cell death blocked by a selenoprotein from a human dermotropic poxvirus. Science 1998;279:102-105.

Press releases, fact sheets and other NIAID-related materials are available on the Internet via the NIAID home page at http://www.niaid.nih.gov.


Story Source:

The above story is based on materials provided by National Institute Of Allergy And Infectious Diseases. Note: Materials may be edited for content and length.


Cite This Page:

National Institute Of Allergy And Infectious Diseases. "Enzyme Protects Virus From Environmental Hazards." ScienceDaily. ScienceDaily, 5 January 1998. <www.sciencedaily.com/releases/1998/01/980105094356.htm>.
National Institute Of Allergy And Infectious Diseases. (1998, January 5). Enzyme Protects Virus From Environmental Hazards. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/1998/01/980105094356.htm
National Institute Of Allergy And Infectious Diseases. "Enzyme Protects Virus From Environmental Hazards." ScienceDaily. www.sciencedaily.com/releases/1998/01/980105094356.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins