Featured Research

from universities, journals, and other organizations

Gene-Reading Problem Linked To Lou Gehrig's Disease

Date:
March 20, 1998
Source:
Johns Hopkins Medical Institutions
Summary:
Johns Hopkins researchers have identified genetic mutations that appear to cause or contribute to more than half of all non-inherited or sporadic cases of the deadly muscle disease amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease.

Johns Hopkins researchers have identified genetic mutations that appear to cause or contribute to more than half of all non-inherited or sporadic cases of the deadly muscle disease amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease.

"If these mutations really are specific to ALS and we can develop a test to detect them, that could help us make the diagnosis and begin treatment much earlier in the course of the disease," says Jeffrey Rothstein, M.D., Ph.D., associate professor of neurology.

The newly identified mutations involve a protein called EAAT2, which normally deactivates and recycles glutamate, a chemical certain nerve cells use to send messages to each other.

Hopkins researchers had previously shown that many ALS patients have little or no EAAT2 in certain areas of the brain and spinal cord, creating an excess of glutamate that kills the nerves that control muscles.

This usually leads to paralysis and death in two to five years. Nearly 30,000 people currently have the disease, and 95 percent of them are thought to have the sporadic form.

The Hopkins team first found evidence of the mutation in a patient who had the inherited form of ALS and unusually reduced levels of EAAT2. The problem, the researchers discovered, was an error in the way the patient's nerve cells were translating the DNA code for EAAT2 into RNA.

Cells use RNA as the blueprint for building a protein. As they translate DNA into RNA, they normally cut out useless bits of DNA called introns and paste together the active parts, called exons. If the introns are not properly removed, they disrupt the blueprint and prevent the cell from making the protein properly.

"In this patient," Rothstein explains, "there were problems in the cutting and pasting. Some of the useless introns in the EAAT2 gene were being kept, while an exon was discarded. That produced defective RNA that led to a defective EAAT2 protein or no protein at all."

The team searched for and found similar mutations in 65 percent of ALS patients they surveyed. The bad RNA either produced a useless version of EAAT2 or suppressed production of normal EAAT2.

When researchers studied where the mutated EAAT2 RNA was present in the body, they found it only in areas where motor nerve cells were dying: in the spine and muscle control areas in the brain. Scientists could not find the mutations in brain tissue from 12 normal subjects or 16 patients with Huntington's disease, Alzheimer's disease, or spinal muscular atrophy, an inherited disorder similar to ALS.

Rothstein's group next looked for a cause of the RNA problems and unexpectedly found that when the cells translated the genetic material, they cut and pasted randomly instead of at specific spots.

Something may be wrong in the biochemical machinery the body uses to decode the EAAT2 gene, Rothstein speculates.

It's also possible that there is an acquired or inherited mutation in the introns of EAAT2 that gives the wrong cues during the editing process, Rothstein says.

The new finding is among the first to be partially funded by the Cal Ripken/Lou Gehrig Fund for Neuromuscular Research, a fund for research into ALS and other neuromuscular diseases created in 1995 when Ripken broke Gehrig's longstanding record for consecutive games played.

Other funding organizations included the National Institutes of Health, the Muscular Dystrophy Association and the ALS Association.

--JHMI--

Johns Hopkins Medical Institutions' news releases are available on a PRE-EMBARGOED basis on EurekAlert at http://www.eurekalert.org, Newswise at http://www.newswise.com and from the Office of Communications and Public Affairs' direct e-mail news release service. To enroll, call 410-955-4288 or send e-mail to bsimpkin@welchlink.welch.jhu.edu or 76520.560@compuserve.com.

On a POST-EMBARGOED basis find them at http://hopkins.med.jhu.edu, Quadnet at http://www.quad-net.com, ScienceDaily at http://www.sciencedaily.com or on CompuServe in the SciNews-MedNews library of the Journalism Forum under file extension ".JHM".


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Gene-Reading Problem Linked To Lou Gehrig's Disease." ScienceDaily. ScienceDaily, 20 March 1998. <www.sciencedaily.com/releases/1998/03/980320164356.htm>.
Johns Hopkins Medical Institutions. (1998, March 20). Gene-Reading Problem Linked To Lou Gehrig's Disease. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/1998/03/980320164356.htm
Johns Hopkins Medical Institutions. "Gene-Reading Problem Linked To Lou Gehrig's Disease." ScienceDaily. www.sciencedaily.com/releases/1998/03/980320164356.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins