Featured Research

from universities, journals, and other organizations

Mathematics Reveals New Patterns Of Brain Cell Activity

Date:
March 30, 1998
Source:
Ohio State University
Summary:
A mathematics researcher at Ohio State University and his colleagues have discovered two new patterns of electrochemical activity among brain cells.

COLUMBUS, Ohio -- A mathematics researcher at Ohio State University and his colleagues have discovered two new patterns of electrochemical activity among brain cells.

The work, which appeared in a recent issue of the journal Science, may one day help explain the changes that occur in the brain during normal sleep and reveal the causes of nervous system disorders such as epilepsy.

David Terman, professor of mathematics at Ohio State, and his collaborators developed mathematical equations that describe the patterns with which electrochemical signals bounce back and forth among neurons. They modeled the signals on computer and discovered two patterns that may help advance a new view of how the brain works.

“Traditionally people thought of brain cells as switching either on or off, but that’s much too simple to account for everything brain cells do,” said Terman. “They really have lives of their own.”

Terman continued: “A common way to think about neurons is that one cell fires off a signal that excites its neighbors, and the neighbors fire off a signal and so on, in synchrony with each other, but real communication is more complex than that. One of the questions we’re confronting is how the brain produces smooth, synchronous wave patterns when the cells sometimes fire in an asynchronous way.”

The researchers looked at inhibitory signaling -- when neurons communicate by chemically suppressing activity in other cells and then releasing it. The cells bounce back after they are released and pass the signal along by suppressing other cells. Scientists observed inhibitory signaling among brain cells in the past, but assumed it couldn’t produce the smooth waves that mark synchronous brain activities such as sleep.

“We thought an inhibitory signal would produce a lurching wave, one that wasn’t very smooth. But we discovered that it can produce a very smooth wave that will spread through other cells, just like an excitatory signal,” said Terman. “An inhibitory signal just travels much slower.”

The researchers found that the key to producing a smooth wave was not whether a cell communicates in an excitatory or inhibitory way, but rather which cells it communicates with. A brain cell can talk to its immediate neighbors in what researchers call on-center communication, or it can skip over its immediate neighbors and talk to its neighbors’ neighbors. That kind of communication is called off-center.

Using the computer, the researchers modeled on-center and off-center inhibitory signals, and produced two very different wave patterns.

When the simulated neurons communicated an inhibitory signal to their immediate neighbors, the resulting wave was jerky and disjointed. When they communicated an inhibitory signal to cells beyond their immediate neighbors, the wave flowed smoothly, albeit much slower than a normal excitatory wave. An excitatory wave may travel as fast as 100 meters per second, while the inhibitory wave traveled only 0.6 millimeters per second.

Terman said that the computer simulations may give scientists clues as to how nervous system disorders such as epilepsy jumble communication signals in the brain, and how inhibitory signals can lead to smooth, synchronous waves like those the brain produces during sleep.

“One of our main motivations for studying this is sleep rhythms,” explained Terman. “As someone first drifts off to sleep, the network of neurons in their brain isn’t very synchronized. It breaks up into different groups, each firing in a different pattern. But as the person falls deeper into sleep, the patterns gradually grow more and more synchronized. We’re trying to understand how that happens.”

Terman speculated as to why smooth waves formed by inhibitory signals should travel through neurons so much slower than excitatory signals.

“Whatever message the neurons are sending, it may be that the brain is trying to keep that information around longer,” he said.

If the brain is trying to differentiate between two rapidly consecutive sounds, for example, it may help to retain a record of them, even if only for a few extra milliseconds.

Terman and his collaborators, including John Rinzel of New York University, Xiao-Jing Wang of Brandeis University, and Bard Ermentrout of the University of Pittsburgh, will continue this work, which was sponsored by the Alfred P. Sloan Foundation, National Science Foundation, National Institutes of Health, and the W.M. Keck Foundation.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Mathematics Reveals New Patterns Of Brain Cell Activity." ScienceDaily. ScienceDaily, 30 March 1998. <www.sciencedaily.com/releases/1998/03/980330073253.htm>.
Ohio State University. (1998, March 30). Mathematics Reveals New Patterns Of Brain Cell Activity. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/1998/03/980330073253.htm
Ohio State University. "Mathematics Reveals New Patterns Of Brain Cell Activity." ScienceDaily. www.sciencedaily.com/releases/1998/03/980330073253.htm (accessed October 1, 2014).

Share This



More Health & Medicine News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins