Featured Research

from universities, journals, and other organizations

HIV Discriminates Amongst Cells

Date:
May 14, 1998
Source:
Johns Hopkins School Of Public Health
Summary:
Researchers at Johns Hopkins have discovered that the human immunodeficiency virus (HIV) depends on the moving parts of a cell's surface in order to enter the cell.

Researchers at Johns Hopkins have discovered that the human immunodeficiency virus (HIV) depends on the moving parts of a cell's surface in order to enter the cell.

"The white blood cell has an intricate semi-rigid structural framework that is both pliable and mobile. It can assemble and disassemble rapidly in response to internal and external signals. This allows the cell to migrate across blood vessel walls and squeeze through small spaces," said David H. Schwartz, MD, PhD, associate professor, Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, who co-authored the paper with Sujatha Iyengar, PhD, research associate, and James E.K. Hildreth, MD, PhD, associate professor, Hopkins School of Medicine. Their study appeared in the current issue of the Journal of Virology.

The implications could be significant. "The clustering transmits signals to the cell that could be important for HIV replication," said Dr. Iyengar. She said that the findings could be relevant to many other kinds of viruses that use specific cell receptors.

"A requirement for contracting actin in the target cell could also be a mechanism that prevents HIV from entering inactive cells, or cells in the early stages of cell death. We know that these are poor host cells for viral replication, and they don't have an active actin filament network to pull surface molecules together," Dr. Schwartz added.

Dr. Hildreth and his colleagues cautioned that speculations about the role of receptor signaling in virus replication and the selective advantage to HIV of entering cells with intact actin remain unproven at this time. However, these roles are being tested.

Actin, a protein also used in muscles, is organized in a lattice just under the surface of the cell. Many protein molecules on the surface of the cell have tails that pass through the cell membrane and project into the cell. Through additional connecting proteins, actin can pull together the tails of proteins projecting through the cell membrane so that they cluster together on the outer surface of the cell. Two of these surface proteins, CD4 and fusin, also serve as receptors for HIV by binding the envelope spikes sticking out from the virus. The Hopkins investigators showed that HIV envelope binding to CD4 and fusin causes them to be concentrated by the actin network to one end of the cell.

To visualize the movement of cell surface receptors in response to HIV envelope, the team labeled the receptors with fluorescent antibody tags and took photographs through a specially designed microscope. Cytochalasin D, a compound that prevents actin filaments from forming, was used to inhibit the movement of CD4 and fusin. It also blocked viral entry.

This work was supported in part by the National Institutes of Health and The American Cancer Society.


Story Source:

The above story is based on materials provided by Johns Hopkins School Of Public Health. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins School Of Public Health. "HIV Discriminates Amongst Cells." ScienceDaily. ScienceDaily, 14 May 1998. <www.sciencedaily.com/releases/1998/05/980514080741.htm>.
Johns Hopkins School Of Public Health. (1998, May 14). HIV Discriminates Amongst Cells. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/1998/05/980514080741.htm
Johns Hopkins School Of Public Health. "HIV Discriminates Amongst Cells." ScienceDaily. www.sciencedaily.com/releases/1998/05/980514080741.htm (accessed October 2, 2014).

Share This



More Health & Medicine News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com
Insertable Cardiac Monitor

Insertable Cardiac Monitor

Ivanhoe (Oct. 1, 2014) A heart monitor the size of a paperclip that can save your life. The “Reveal Linq” allows a doctor to monitor patients with A-Fib on a continuous basis for up to 3 years! Video provided by Ivanhoe
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins