Featured Research

from universities, journals, and other organizations

Biochemists Gain Crystal-Clear Insight Into 'Ancient' Enzyme

Date:
May 15, 1998
Source:
Duke University
Summary:
Biochemists from the University of Pennsylvania and Duke University Medical Center have reported analytical studies revealing unexpected new insights into how two very different molecules - a protein and an RNA - work together to form an enzyme that performs one of the fundamental tasks of constructing the protein-making machinery of the cell.

DURHAM, N.C. -- Biochemists from the University of Pennsylvania and Duke University Medical Center have reported analytical studies revealing unexpected new insights into how two very different molecules - a protein and an RNA - work together to form an enzyme that performs one of the fundamental tasks of constructing the protein-making machinery of the cell.

Their findings suggest that the partnership between the two molecules might represent an ancient remnant of an early era in life's evolution when RNA molecules were the enzymatic workhorses of primordial cells, before more versatile proteins evolved to take over the job.

The findings also may offer new targets for antibiotic compounds that could disrupt this key process in bacteria to kill them, the researchers said.

The biochemists reported in the May 1 issue of Science that they had obtained the crystal structure of the protein that is part of the enzyme "ribonuclease P." This enzyme is also known as a "ribozyme," because it is one in which the ribonucleic acid (RNA) functions as a catalyst.

Reporting their work were graduate student Travis Stams and Professor David Christianson of the University of Pennsylvania chemistry department; and Duke Medical Center postdoctoral fellow S. Niranjanakumari and Carol Fierke, associate professor of biochemistry. Their work is supported by the National Institutes of Health.

Ribonuclease P plays a key role in activating a molecule called transfer-RNA (tRNA) after it is first synthesized. Such tRNA molecules are the cellular equivalent of errand boys, latching onto individual subunits of proteins, called amino acids, to carry them to the cell's protein-making machinery, where the amino acids are chemically attached to one another in long stringlike molecules that fold into the cell's working proteins.

Specifically, ribonuclease P is a molecular scissors that helps turn a newly synthesized precursor into a functioning tRNA molecule by snipping off an extraneous segment at one end of the "pre-tRNA" molecule. Similarly, ribonuclease P helps activate another RNA, called ribosomal RNA, that is central to the cell's protein-making machinery.

In their experiments, the University of Pennsylvania researchers produced crystals of the ribonuclease P protein, and obtained the protein's structure through the widely used analytical method of X-ray crystallography. In this technique, an X-ray beam is directed through the protein crystal and is diffracted by the crystal's atoms into a pattern of spots. By analyzing the pattern, chemists can deduce the structure of the protein molecules that make up the crystal.

In analyzing the protein's structure, the biochemists found three regions where the protein could bind RNA. One region had an unusual topology and chemical characteristics that suggested it could be the place where the protein bound the RNA portion of the ribonuclease P enzyme.

However, another RNA-binding region of the protein consisted of a large cleft whose characteristics suggested it grabbed and held the segment of the pre-tRNA that was to be snipped off to produce the functioning tRNA.

These findings were particularly surprising, said the chemists, because most theories held that such proteins played only a structural role, helping fold the RNA into its active form, and not an active role in the catalytic chemical reaction.

"Before we had the structure, we had demonstrated that the protein was very important for binding of the pre-tRNA substrate," Fierke said, "but it wasn't important for binding tRNA. This binding could have been either an indirect effect, like changing the conformation of the RNA, or a direct effect. And in general it's been believed such proteins were only involved in folding the RNA, and not really involved in catalysis.

"But these data suggest that the end of the pre-tRNA snakes through that cleft, with the protein directly contacting the pre-tRNA. This is really a very different mechanism for what these proteins do," said Fierke.

The Duke researchers performed chemical experiments that confirmed this contact, producing altered versions of the protein that would chemically cross-link with the RNA in the cleft, allowing them to unequivocally determine that the protein was holding the RNA.

The Duke researchers also are tinkering with the protein's structure to explore a potential third key RNA binding region on the protein that may help the RNA of the ribonuclease P grab magnesium atoms that it needs to function optimally.

Such findings may offer intriguing insights into how the machinery of living cells first evolved, Fierke said.

"We really didn't expect such a role for the protein," she said. "And, if it turns out to be true, one could speculate that one of the reasons life evolved from an RNA-dependent world to a protein-dependent world is that the RNA required magnesium to do anything. And RNA is not particularly good at forming specific metal binding sites, whereas proteins are particularly good."

The biochemists' work might offer new targets for antibiotics, since ribonuclease P is essential for making all tRNAs, and since the bacterial enzyme is different from the enzyme in higher organisms. Thus, both the Duke and University of Pennsylvania groups propose to design inhibitor compounds that will block some aspect of the critical contacts among the protein, the RNA portion of the ribozyme, and the pre-tRNA.

"There are a great many places one could target to thwart this enzyme," Fierke said.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "Biochemists Gain Crystal-Clear Insight Into 'Ancient' Enzyme." ScienceDaily. ScienceDaily, 15 May 1998. <www.sciencedaily.com/releases/1998/05/980515080552.htm>.
Duke University. (1998, May 15). Biochemists Gain Crystal-Clear Insight Into 'Ancient' Enzyme. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/1998/05/980515080552.htm
Duke University. "Biochemists Gain Crystal-Clear Insight Into 'Ancient' Enzyme." ScienceDaily. www.sciencedaily.com/releases/1998/05/980515080552.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins