Featured Research

from universities, journals, and other organizations

Scientists Create Extremely Sensitive Test For Detecting Radiation Damage

Date:
May 15, 1998
Source:
University Of North Carolina At Chapel Hill
Summary:
Canadian scientists collaborating with a University of North Carolina at Chapel Hill researcher have developed the most precise test yet for genetic damage caused by ionizing radiation and cancer-causing chemicals.

CHAPEL HILL - Canadian scientists collaborating with a University of North Carolina at Chapel Hill researcher have developed the most precise test yet for genetic damage caused by ionizing radiation and cancer-causing chemicals.

The new test promises to be extremely useful because it is some 10,000 to 100,000 times more sensitive than other assays, the scientists say. Experiments with the technique also suggest doctors soon may be able to boost the body's ability to repair genetic injuries.

"Potentially, this assay could measure clinically relevant damage from ionizing radiation even in a clinical situation," said Dr. Steven A. Leadon, professor of radiation oncology at the UNC-CH School of Medicine. "Before long, we also may be able to monitor the effects of irradiating tumors much better than we can now."

A report on the research appears in the May 15 issue of the journal Science. Besides Leadon, a member of the UNC Lineberger Comprehensive Cancer Center, authors are Drs. X. Chris Le, James Z. Xing, Jane Lee and Michael Weinfeld of the University of Alberta.

Ionizing radiation kills cells by breaking or otherwise disrupting segments of genetic material known as DNA, Leadon said. But currently used methods of measuring such damage are not sensitive enough to assess environmental radiation effects. Sometimes testing techniques themselves harm DNA.

"Our new technique employs antibodies that recognize specific forms of DNA damage," Le said. "Those antibodies are then linked to other antibodies that give off fluorescent light and also attach to the damaged DNA."

Scientists feed that mixture of DNA and antibodies through a tiny glass tube to undergo a process called capillary electrophoresis, which Dr. James Jorgenson, professor of chemistry at UNC-CH, pioneered more than a decade ago. A laser beam passes across the tube illuminating the sample, and electronic equipment then monitors the resulting fluorescence. Higher light intensity corresponds to more damage.

In the experiments reported in Science, the researchers demonstrated both the sensitivity of their new method and that DNA repair can be accelerated. They subjected cultured cells to 0.25 Gray - a unit of radiation exposure - four hours before exposing the same cells to a clinical dose of two Gray, eight times as much. Their assay showed pre-treated cells removed genetic damage caused by the larger dose significantly faster than cells not pre-treated.

"We could use this ultra-sensitive assay for other sources of DNA damage, such as those caused by tobacco smoke," Le said. "In this work, we looked at thymine glycol, a kind of damage often caused by radiation."

Besides being less sensitive, existing tests are labor-intensive or require large amounts of sample for analysis, said Leadon, who developed the antibodies the Canadian scientists used. Because those antibodies are so specific, the new assay can reveal a single defect in DNA 300 million base pairs in size. A base pair is a "rung" on a DNA molecule, which is sometimes likened to a long and twisted ladder.

"There is little doubt that, over the foreseeable future, we will see an explosion in the number of reports making use of this seminal technique in the various fields of life sciences, from toxicology to molecular biology," according to an accompanying editorial in Science.

"Armed with such a specific and sensitive assay, one can only begin to imagine some of the possibilities," the editorial writer said. "For instance, scientists should more easily detect the type and frequency of DNA lesions in living tissues after exposure to environmental radiation or chemical carcinogens."


Story Source:

The above story is based on materials provided by University Of North Carolina At Chapel Hill. Note: Materials may be edited for content and length.


Cite This Page:

University Of North Carolina At Chapel Hill. "Scientists Create Extremely Sensitive Test For Detecting Radiation Damage." ScienceDaily. ScienceDaily, 15 May 1998. <www.sciencedaily.com/releases/1998/05/980515080645.htm>.
University Of North Carolina At Chapel Hill. (1998, May 15). Scientists Create Extremely Sensitive Test For Detecting Radiation Damage. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/1998/05/980515080645.htm
University Of North Carolina At Chapel Hill. "Scientists Create Extremely Sensitive Test For Detecting Radiation Damage." ScienceDaily. www.sciencedaily.com/releases/1998/05/980515080645.htm (accessed September 30, 2014).

Share This



More Health & Medicine News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How 'Yes Means Yes' Defines Sexual Assault

How 'Yes Means Yes' Defines Sexual Assault

Newsy (Sep. 29, 2014) Aimed at reducing sexual assaults on college campuses, California has adopted a new law changing the standard of consent for sexual activity. Video provided by Newsy
Powered by NewsLook.com
Scientists May Have Found An Early Sign Of Pancreatic Cancer

Scientists May Have Found An Early Sign Of Pancreatic Cancer

Newsy (Sep. 29, 2014) Researchers looked at 1,500 blood samples and determined people who developed pancreatic cancer had more branched chain amino acids. Video provided by Newsy
Powered by NewsLook.com
Colo. Doctors See Cluster of Enterovirus Cases

Colo. Doctors See Cluster of Enterovirus Cases

AP (Sep. 29, 2014) Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com
Dr.'s Unsure of Cause of Fast-Spreading Virus

Dr.'s Unsure of Cause of Fast-Spreading Virus

AP (Sep. 29, 2014) Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins