Featured Research

from universities, journals, and other organizations

Snakes Alive! Hot Polymer Chains Bite Back At "Reptation" Foes, Suggesting Stronger Materials

Date:
July 30, 1998
Source:
University Of Delaware
Summary:
Stronger materials for aircraft, farm equipment, medical devices and consumer products may result from University of Delaware research showing how hot polymer chains coil back and snap forward, snake-like, leaving a telltale, rippling "signature" wherever plastics are joined together.

Stronger materials for aircraft, farm equipment, medical devices and consumer products may result from University of Delaware research showing how hot polymer chains coil back and snap forward, snake-like, leaving a telltale, rippling "signature" wherever plastics are joined together.

The UD study--published in the July 28, 1998, issue of the journal, Macromolecules--confirms a popular but controversial scientific theory of polymer behavior, known as the "reptation model," and sets the stage for stronger composite materials and welded plastic seams, says Chemical Engineering Prof. Richard P. Wool.

Describing the serpentine motion of a single polymer chain trapped within a tangle or "tube" of neighboring polymer molecules, the reptation theory was proposed in 1971 by Nobel Prize winner Pierre-Gilles de Gennes and further developed by Sir Sam Edwards and M. Doi, explains UD doctoral candidate Keith A. Welp, lead author of the Macromolecules paper. Over the past 27 years, however, researchers have challenged the reptation model, arguing that polymer chains act in tandem with nearby molecules and, therefore, exhibit far more complex behaviors in hot environments.

"Critics of the reptation theory have been quick to point out that some snakes are sidewinders!" Wool says. "But our experiments clearly confirm de Gennes' vision of polymer chains slithering forward and back."

And, a mathematical formula expressing that behavior makes it possible to predict how quickly different polymer molecules completely mesh at weld interfaces. Such information should support many manufacturing uses--from strength testing of welds to efficient adhesives development-or perhaps even biological processes involving chains of DNA (deoxyribonucleic acid), Wool says.

"We can calculate the time it takes a molecule to diffuse over a given distance, relative to its size, or radius," he reports. "In this way, chemical company employees could more precisely determine, for instance, the size of molecules required to efficiently complete a particular welding application."

Ultimately, Wool says, manufacturing might be simplified even further, by incorporating the reptation formula into a software program, to support computer-based control on the factory floor. Meanwhile, Welp says, the reptation model suggests more efficient production processes. "If you don't assume the right dynamics theory during plastics manufacturing," he says, "then you're playing with fire--or snakes, as the case may be!"

Snakes On The Glass

To learn exactly how polymer chains move when plastic components are welded together, the UD research team--in collaboration with Jimmy Mays, professor, and S. Pispas, postdoctoral researcher, both of the University of Alabama at Birmingham--first "labeled" two types of polystyrene molecules. In the middle section of some chains, they replaced 50 percent of the molecules' hydrogen atoms with deuterium. Mirror-image molecules were then created by replacing hydrogen with deuterium on both ends, without disturbing the middle of the chain. "It would be like having one necklace with diamonds in the center and pearls on both ends," Wool explains, "and another necklace with pearls in the middle and diamonds at either end."

Labeling polystyrene with deuterium helped the researchers track the chains' movement during welding. Just as the end of a rope thrashes more freely than its center, Welp says, the exposed "head" and "tail" of a polymer chain exhibit greater flexibility. In experiments, therefore, more deuterium wound up on one side of a welded seam. That's because the confined, deuterium-loaded midsections of half the chains stayed put on one side, while the flapping, deuterium tips of the mirror-image molecules jumped across the interface. An experimental interface was created by spreading the hydrogen-deuterium-hydrogen (HDH) chains onto a platform of silicon, then covering clean, glass slides with the deuterium-hydrogen-deuterium (DHD) chains. Sliding the DHD samples carefully into water helped dislodge them from the glass, so that Welp could ease them directly on top of the HDH layer. Finally, Welp and Wool evaporated the water and heated their samples before investigating the molecular characteristics of the resulting weld.

With Sushil K. Satija of the Center for Neutron Research at the National Institute of Standards and Technology, welded samples were subjected to two types of tests: specular neutron reflectivity measurements and dynamic secondary ion mass spectroscopy. Bouncing neutrons off the interface to measure their reflection at different angles revealed the location of deuterium. And, drilling the surface with ions and analyzing molecular fragments at different depths helped the researchers trace the "smooth, rippling pattern" of deuterium atoms left by the snake-like motion of polymer chains.

Wool says he expects the UD findings to create "quite a stir" among reptation theory foes. But the experimental evidence provides clear support for de Gennes' model, and for similar theories inspired by it, he says. "The challenge now is to solve some of the fundamental viscosity problems with Sir Edwards' rheology theory, and to develop clever applications for the design of new adhesives, for better welds and for more accurate strength tests."

This research received support from the National Science Foundation, as well as the Delaware Space Grant College Fellowship Program, administered by the National Aeronautics and Space Administration. Some work was completed at the Center for Microanalysis of Materials at the University of Illinois, which is supported by the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by University Of Delaware. Note: Materials may be edited for content and length.


Cite This Page:

University Of Delaware. "Snakes Alive! Hot Polymer Chains Bite Back At "Reptation" Foes, Suggesting Stronger Materials." ScienceDaily. ScienceDaily, 30 July 1998. <www.sciencedaily.com/releases/1998/07/980730051824.htm>.
University Of Delaware. (1998, July 30). Snakes Alive! Hot Polymer Chains Bite Back At "Reptation" Foes, Suggesting Stronger Materials. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/1998/07/980730051824.htm
University Of Delaware. "Snakes Alive! Hot Polymer Chains Bite Back At "Reptation" Foes, Suggesting Stronger Materials." ScienceDaily. www.sciencedaily.com/releases/1998/07/980730051824.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins