Featured Research

from universities, journals, and other organizations

Ancient "Jumping DNA" May Have Evolved Into Key Component Of Human Immune System

Date:
August 21, 1998
Source:
Howard Hughes Medical Institute
Summary:
The human immune system, an elegant and intricate biological defense system unmatched in most life forms, may have evolved from a mobile piece of DNA that inserted itself into the mammalian genome more than 450 million years ago.

August 20, 1998—The human immune system, an elegant and intricate biological defense system unmatched in most life forms, may have evolved from a mobile piece of DNA that inserted itself into the mammalian genome more than 450 million years ago.

A team of researchers led by David G. Schatz at the Howard Hughes Medical Institute at Yale University has found evidence that tiny gene particles vital to the task of producing millions of different kinds of antibodies act like a gene segment that can "jump" into foreign DNA. Although there are many examples of such genes in lower organisms, it is the first cut-and-paste "transposase" ever found in humans.

"This helps explain why the jawed vertebrates are the only species that have a second, adaptive immune system, in addition to the innate immune system that all other species have," says Schatz, an immunologist. His study, conducted with Yale researchers Alka Agrawal and Quinn M. Eastman, is published in the August 20, 1998, issue of the journal Nature.

An adaptive immune system relies on two lines of defense to detect and destroy invaders. Both parts of the immune system belong to a class of white blood cells called lymphocytes, found in the blood and lymphoid organs. B lymphocytes produce antibodies that bind tightly to a foreign molecule, inactivating it or marking it for destruction by other cells in the immune system. T lymphocytes detect the presence of foreign molecules inside special "processing" cells once those cells have displayed a fragment of the foreign molecule-those pieces are called antigens-on the processing cell's surface. So-called T-cell receptors on the surface of the T lymphocyte bind strongly to the antigen.

Although they perform different functions, both B and T lymphocytes use the same unique genetic mechanism to economically generate an almost unlimited number of antibodies and T-cell receptors. Indeed, the human immune system is capable of producing a larger number of different antibodies and receptors than there are numbers of genes in the entire human genome. To accomplish this feat, the immune system uses a smaller number of gene segments that can be shuffled and joined to one another to produce many distinct combinations. Each recombination essentially produces a new gene, and provides an almost infinite database of genetic information from which to generate antibodies and T-cell receptors.

This system of genetic recombination is at the heart of Schatz's study. Two closely linked genes, RAG1 and RAG2 (for recombination-activating genes 1 and 2), code for proteins that promote this genetic recombination. The Schatz team has found that RAG1 and RAG2 work together as a transposase, an enzyme that snips pieces of DNA out of one location in a chromosome and transposes these pieces elsewhere. This ability to slice and recombine genes accounts for the "split nature" of antibody and T-cell receptor gene DNA, allowing vertebrates to create millions of different antibodies and T-cell receptors from a limited number of genes, Schatz believes.

Schatz's team and other research groups have explored the genomes of a variety of vertebrates for the presence of RAG1 and RAG2 and have found these two genes in all jawed vertebrates examined thus far. All of these species possess immune systems that use genetic recombination. However, jawless hagfish and lamprey, which lie just below the jawed vertebrates on the evolutionary tree and do not possess the system of B and T lymphocytes, lack RAG1 and RAG2 or any close relatives of these genes. Based on these findings, Schatz and his colleagues suggest that the RAG transposase must have acted something like a virus, inserting itself into the genome of jawed vertebrates after that lineage split from its jawless relatives approximately 450 million years ago.

"No other genes in mammals are split up like this and then recombined at the DNA level," Schatz says. He cautions, however, that although the researchers have shown transpositional activity in vitro, they have not proven it works that way in the human body. The RAG genes now may just work to slice and connect pieces of genes without inserting the excised piece of DNA in a different location.

"One question we are interested in now is to understand why RAG1 and RAG2 may have once functioned as a [more general] transposase, but don't now. What has changed?" Schatz says. "Has the body found a way of suppressing their ability to insert genes elsewhere in the genome? That would make sense, because moving your DNA around that way randomly could kill you."


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Ancient "Jumping DNA" May Have Evolved Into Key Component Of Human Immune System." ScienceDaily. ScienceDaily, 21 August 1998. <www.sciencedaily.com/releases/1998/08/980821085953.htm>.
Howard Hughes Medical Institute. (1998, August 21). Ancient "Jumping DNA" May Have Evolved Into Key Component Of Human Immune System. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/1998/08/980821085953.htm
Howard Hughes Medical Institute. "Ancient "Jumping DNA" May Have Evolved Into Key Component Of Human Immune System." ScienceDaily. www.sciencedaily.com/releases/1998/08/980821085953.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins