Featured Research

from universities, journals, and other organizations

Neurotransmission Machinery Visualized For The First Time

Date:
September 24, 1998
Source:
Howard Hughes Medical Institute
Summary:
The classic image of communication between brain cells shows a neurotransmitter crossing the synapse and binding to receptors on the surface of a neighboring neuron. Yet, scientists have had only a murky picture of the events within the secreting neuron that trigger this neurotransmitter release.

September 23,1998—The classic image of communication between brain cells shows a neurotransmitter crossing the synapse and binding to receptors on the surface of a neighboring neuron. Yet, scientists have had only a murky picture of the events within the secreting neuron that trigger this neurotransmitter release.

Now, a group of researchers led by Axel T. Brunger, a Howard Hughes Medical Institute (HHMI) investigator at Yale University has deciphered and produced the first glimpses of the molecular machinery that propels neurotransmitters into the synapse. The key players are a family of proteins called SNAREs (Soluble NSF Attachment protein REceptor). These proteins haven't changed much through evolution; SNAREs play a similar role in the secretions of even primitive life forms like yeast.

In neurons, the merging of these mostly amorphous proteins into a highly structured and charged complex precipitates neurotransmitter release. Formation of the complex fuses vesicles—tiny sacs carrying the neurotransmitter inside the neuron—with the cell membrane, spewing the neurotransmitter into the synapse. Such vesicle fusion occurs millions of times daily in each of the human brain's 100 billion neurons. So understanding vesicle fusion promises to shed light on processes like learning and memory, and may lead to improved treatments for brain disorders.

"It's sort of like merging two soap bubbles into one, but hardly that simple," explained R. Bryan Sutton, an HHMI associate in Brunger's laboratory. Sutton, Brunger and their colleagues report the elucidation of the synaptic fusion complex's intricate molecular structure in the September 24, 1998, issue of Nature.

The researchers used ultra-bright x-ray radiation from a synchrotron facility funded by the U.S. Department of Energy to illuminate the tiny protein crystals and determine the shape of the complex, atom-by-atom. They then created computer reconstructions that provide clues about how this pivotal protein may accomplish its mission.

Within the neuron, vesicles fill up with neurotransmitters, such as dopamine or serotonin. They then travel out into the neuron's extensions (axons), where they dock at the membrane and await an electrochemical signal to merge. At this moment the SNAREs form a complex.

Like other known fusion mechanisms, such as those used by viruses to infect cells, synaptic fusion employs a protein agent to meld two membranes. But unlike viral mechanisms, in which the fusion protein simply changes its shape, the very assembly of the synaptic fusion protein itself leads to the union of vesicle and cell membrane.

This assembly likely begins when two SNARE proteins in the cell's membrane, SNAP-25 and syntaxin, join together, Brunger says. This two-part complex is then joined by a third protein from the vesicle, synaptobrevin, in a configuration that sets up electrical and chemical forces that could promote membrane fusion. In addition, highly flexible helical structures in the complex, prone to twisting and bending, could cause strains that physically deform fatty layers within the two membranes, allowing them to mix. The complex's highly grooved surface, with distinct electrically and chemically polarized regions, could also be important for fusion and for the binding of regulatory factors affecting neurotransmission, say the researchers.

"The complex may act sort of like a winch to drive the vesicle down into the neuron's membrane," said Brunger. "Diseases such as tetanus and botulism take advantage of the fusion machinery by attacking these ties between neurotransmitter-filled vesicles and the neuron's membrane, effectively cutting the winch cable and causing neurological symptoms."

Advances in knowledge about the protein complex's structure could be of potential use in designing new medications for disorders of brain function, suggests Brunger.


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Neurotransmission Machinery Visualized For The First Time." ScienceDaily. ScienceDaily, 24 September 1998. <www.sciencedaily.com/releases/1998/09/980924075145.htm>.
Howard Hughes Medical Institute. (1998, September 24). Neurotransmission Machinery Visualized For The First Time. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/1998/09/980924075145.htm
Howard Hughes Medical Institute. "Neurotransmission Machinery Visualized For The First Time." ScienceDaily. www.sciencedaily.com/releases/1998/09/980924075145.htm (accessed August 20, 2014).

Share This




More Health & Medicine News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Raw: World's Oldest Man Lives in Japan

Raw: World's Oldest Man Lives in Japan

AP (Aug. 20, 2014) — A 111-year-old Japanese was certified as the world's oldest man by Guinness World Records on Wednesday. Sakari Momoi, a native of Fukushima in northern Japan, was given a certificate at a hospital in Tokyo. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) — A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Freetown a City on Edge

Ebola-Hit Sierra Leone's Freetown a City on Edge

AFP (Aug. 19, 2014) — Residents of Sierra Leone's capital voice their fears as the Ebola virus sweeps through west Africa. Duration: 00:56 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins